Loading…

Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images

The spatial distribution of population density is crucial for analysing the relationships among economic growth, environmental protection and resource use. In this study we simulated China's population density in 1998 at 1 km×1 km resolution by integrating DMSP/OLS non-radiance-calibrated night...

Full description

Saved in:
Bibliographic Details
Published in:International journal of remote sensing 2009-01, Vol.30 (4), p.1003-1018
Main Authors: Zhuo, L., Ichinose, T., Zheng, J., Chen, J., Shi, P. J., Li, X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543
cites cdi_FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543
container_end_page 1018
container_issue 4
container_start_page 1003
container_title International journal of remote sensing
container_volume 30
creator Zhuo, L.
Ichinose, T.
Zheng, J.
Chen, J.
Shi, P. J.
Li, X.
description The spatial distribution of population density is crucial for analysing the relationships among economic growth, environmental protection and resource use. In this study we simulated China's population density in 1998 at 1 km×1 km resolution by integrating DMSP/OLS non-radiance-calibrated night-time images, SPOT/VGT 10-day maximum NDVI composite, population census data and vector county boundaries. Population density, both inside and outside of light patches, was estimated for four types of counties, which were classified according to their light characteristics. The model for estimating population density inside the light patches was developed based on a significant correlation between light intensity and population, while the model for estimating population density outside of light patches was constructed by combining Coulomb's law with electric field superposition principle. Our method was simpler and less expensive than existing methods for spatializing population density. The results were consistent with other estimates but exhibited more spatial heterogeneity and richer information.
doi_str_mv 10.1080/01431160802430693
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_01431160802430693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33750843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EEqHwA7j5ArelnvWuvStxQeFTSlWk9r6aXc8mRo4dbKc0l_72OkrhUqFe7JH8PK88M4y9BfEBRCfOBTQSQJWybqRQvXzGFiCVqtpewHO2OL5XBYCX7FVKv4QQSrd6we4ugiHnrF_zvCG-C7u9w2yD54Z8svnAw8yXG-uRYz4h9pYcd3RTzhETGV7gzxdXP88vV1fcB19FNBb9RNWEzo4Rc2G8XW9yle2WuDuW3G5xTek1ezGjS_Tm4T5j11-_XC-_V6vLbz-Wn1bV1MguVyRHLQBItUD12JhRmE6haeZmMkDQj9DXmjohyUyiH9UM40w9qg5Q67aRZ-z9KXYXw-89pTxsbZpK3-gp7NMgpW5F18gnwVporTtVFxBO4BRDSpHmYRdLS_EwgBiOGxkebaQ47x7CMZXRzLEMyaZ_Yg11q1SrC6dPnPVziFv8E6IzQ8aDC_Gv9Ch9yLe5mB-fNOX_P3gPxDWw0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20777862</pqid></control><display><type>article</type><title>Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zhuo, L. ; Ichinose, T. ; Zheng, J. ; Chen, J. ; Shi, P. J. ; Li, X.</creator><creatorcontrib>Zhuo, L. ; Ichinose, T. ; Zheng, J. ; Chen, J. ; Shi, P. J. ; Li, X.</creatorcontrib><description>The spatial distribution of population density is crucial for analysing the relationships among economic growth, environmental protection and resource use. In this study we simulated China's population density in 1998 at 1 km×1 km resolution by integrating DMSP/OLS non-radiance-calibrated night-time images, SPOT/VGT 10-day maximum NDVI composite, population census data and vector county boundaries. Population density, both inside and outside of light patches, was estimated for four types of counties, which were classified according to their light characteristics. The model for estimating population density inside the light patches was developed based on a significant correlation between light intensity and population, while the model for estimating population density outside of light patches was constructed by combining Coulomb's law with electric field superposition principle. Our method was simpler and less expensive than existing methods for spatializing population density. The results were consistent with other estimates but exhibited more spatial heterogeneity and richer information.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160802430693</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>International journal of remote sensing, 2009-01, Vol.30 (4), p.1003-1018</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543</citedby><cites>FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21256657$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo, L.</creatorcontrib><creatorcontrib>Ichinose, T.</creatorcontrib><creatorcontrib>Zheng, J.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><creatorcontrib>Shi, P. J.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><title>Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images</title><title>International journal of remote sensing</title><description>The spatial distribution of population density is crucial for analysing the relationships among economic growth, environmental protection and resource use. In this study we simulated China's population density in 1998 at 1 km×1 km resolution by integrating DMSP/OLS non-radiance-calibrated night-time images, SPOT/VGT 10-day maximum NDVI composite, population census data and vector county boundaries. Population density, both inside and outside of light patches, was estimated for four types of counties, which were classified according to their light characteristics. The model for estimating population density inside the light patches was developed based on a significant correlation between light intensity and population, while the model for estimating population density outside of light patches was constructed by combining Coulomb's law with electric field superposition principle. Our method was simpler and less expensive than existing methods for spatializing population density. The results were consistent with other estimates but exhibited more spatial heterogeneity and richer information.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EEqHwA7j5ArelnvWuvStxQeFTSlWk9r6aXc8mRo4dbKc0l_72OkrhUqFe7JH8PK88M4y9BfEBRCfOBTQSQJWybqRQvXzGFiCVqtpewHO2OL5XBYCX7FVKv4QQSrd6we4ugiHnrF_zvCG-C7u9w2yD54Z8svnAw8yXG-uRYz4h9pYcd3RTzhETGV7gzxdXP88vV1fcB19FNBb9RNWEzo4Rc2G8XW9yle2WuDuW3G5xTek1ezGjS_Tm4T5j11-_XC-_V6vLbz-Wn1bV1MguVyRHLQBItUD12JhRmE6haeZmMkDQj9DXmjohyUyiH9UM40w9qg5Q67aRZ-z9KXYXw-89pTxsbZpK3-gp7NMgpW5F18gnwVporTtVFxBO4BRDSpHmYRdLS_EwgBiOGxkebaQ47x7CMZXRzLEMyaZ_Yg11q1SrC6dPnPVziFv8E6IzQ8aDC_Gv9Ch9yLe5mB-fNOX_P3gPxDWw0w</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Zhuo, L.</creator><creator>Ichinose, T.</creator><creator>Zheng, J.</creator><creator>Chen, J.</creator><creator>Shi, P. J.</creator><creator>Li, X.</creator><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20090101</creationdate><title>Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images</title><author>Zhuo, L. ; Ichinose, T. ; Zheng, J. ; Chen, J. ; Shi, P. J. ; Li, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo, L.</creatorcontrib><creatorcontrib>Ichinose, T.</creatorcontrib><creatorcontrib>Zheng, J.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><creatorcontrib>Shi, P. J.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuo, L.</au><au>Ichinose, T.</au><au>Zheng, J.</au><au>Chen, J.</au><au>Shi, P. J.</au><au>Li, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images</atitle><jtitle>International journal of remote sensing</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>30</volume><issue>4</issue><spage>1003</spage><epage>1018</epage><pages>1003-1018</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>The spatial distribution of population density is crucial for analysing the relationships among economic growth, environmental protection and resource use. In this study we simulated China's population density in 1998 at 1 km×1 km resolution by integrating DMSP/OLS non-radiance-calibrated night-time images, SPOT/VGT 10-day maximum NDVI composite, population census data and vector county boundaries. Population density, both inside and outside of light patches, was estimated for four types of counties, which were classified according to their light characteristics. The model for estimating population density inside the light patches was developed based on a significant correlation between light intensity and population, while the model for estimating population density outside of light patches was constructed by combining Coulomb's law with electric field superposition principle. Our method was simpler and less expensive than existing methods for spatializing population density. The results were consistent with other estimates but exhibited more spatial heterogeneity and richer information.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01431160802430693</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-1161
ispartof International journal of remote sensing, 2009-01, Vol.30 (4), p.1003-1018
issn 0143-1161
1366-5901
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_01431160802430693
source Taylor and Francis Science and Technology Collection
subjects Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Internal geophysics
Teledetection and vegetation maps
title Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20population%20density%20of%20China%20at%20the%20pixel%20level%20based%20on%20DMSP/OLS%20non-radiance-calibrated%20night-time%20light%20images&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Zhuo,%20L.&rft.date=2009-01-01&rft.volume=30&rft.issue=4&rft.spage=1003&rft.epage=1018&rft.pages=1003-1018&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160802430693&rft_dat=%3Cproquest_infor%3E33750843%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-e3b7011e651e2b4db0d86ad4f4cd1e19b1927e803edc09b6f1bfe9a681a77543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20777862&rft_id=info:pmid/&rfr_iscdi=true