Loading…
Locomotor Behavioral Response of Mosquitofish (Gambusia affinis) to Subacute Mercury Stress Monitored by Video Tracking System
Locomotor behavior is commonly affected by contaminants, and the pattern of fish swimming is a highly organized species-specific response. In the current study, we examined the locomotor behavioral response of the mosquitofish, Gambusia affinis, which was exposed to a sublethal concentration (LC5, 2...
Saved in:
Published in: | Drug and chemical toxicology (New York, N.Y. 1978) N.Y. 1978), 2007-01, Vol.30 (4), p.383-397 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Locomotor behavior is commonly affected by contaminants, and the pattern of fish swimming is a highly organized species-specific response. In the current study, we examined the locomotor behavioral response of the mosquitofish, Gambusia affinis, which was exposed to a sublethal concentration (LC5, 20 μg L) of mercuric chloride (HgCl2) for 28 days and monitored using a computer vision system. The EthoVision video tracking system for automation of behavioral studies at regular intervals revealed abnormal locomotor behavior such as reduction in swimming speed (cm s) and distance traveled per unit time. The effects of this metal on the gill morphology and bioaccumulation in different body parts were also investigated. High-resolution microscopy studies revealed abnormal gill morphology, with fusion of primary lamellae along with deep lesions and erosions in the secondary lamellae. The bioaccumulation concentrations in head, body, and viscera were determined by cold vapor atomic absorption spectrometric technique at regular intervals. The results indicated that the accumulation of mercury was the highest in viscera followed by head and body, with bioconcentration factors (BCFs) of 3.99, 2.18, and 1.57 and uptake rate constants (k1) of 17.91, 11.02, and 8.13, respectively. These observations indicate that alterations in fish behavior under subacute stress can provide important information useful in predicting the stress. |
---|---|
ISSN: | 0148-0545 1525-6014 |
DOI: | 10.1080/01480540701522551 |