Loading…

Influence of hydrogen bonding on phase abundance in ferroelectric liquid crystals

The synthesis and characterization of five hydrogen-bonded ferroelectric liquid crystal complexes (HBFLCs) prepared from mesogenic p-n-alkoxy benzoic acids and non-mesogenic propionic/butyric acids with different chiral centres are reported. Complementary intermolecular hydrogen bonding is confirmed...

Full description

Saved in:
Bibliographic Details
Published in:Liquid crystals 2004-03, Vol.31 (3), p.303-310
Main Authors: Sridevi, B., Chalapathi, P. V., Srinivasulu, M., Pisipati, V. G. K. M., Potukuchi, D. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The synthesis and characterization of five hydrogen-bonded ferroelectric liquid crystal complexes (HBFLCs) prepared from mesogenic p-n-alkoxy benzoic acids and non-mesogenic propionic/butyric acids with different chiral centres are reported. Complementary intermolecular hydrogen bonding is confirmed through IR study. HBFLCs are found to exhibit chiral nematic (N*), smectic C* (SmC*) and smectic G* (monotropic) phases in their cooling profiles during polarizing thermal microscopy and differential scanning calorimetry. Phase coexistence regions are observed above the IN* transition. The chiral nematic to smectic C* transition is found to be of first order. The temperature variation of spontaneous polarization exhibited by these HBFLC complexes in their SmC* phase is presented. The effect of non-covalent interaction imparted by the soft hydrogen bonding in these LC complexes on enhanced or induced thermal stability of tilted LC phases is discussed.
ISSN:0267-8292
1366-5855
DOI:10.1080/02678290410001648705