Loading…
An Extension Problem Related to the Fractional Laplacian
The operator square root of the Laplacian (− ▵) 1/2 can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this article, we obtain similar characterizations for general fractional powers of t...
Saved in:
Published in: | Communications in partial differential equations 2007-08, Vol.32 (8), p.1245-1260 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3 |
container_end_page | 1260 |
container_issue | 8 |
container_start_page | 1245 |
container_title | Communications in partial differential equations |
container_volume | 32 |
creator | Caffarelli, Luis Silvestre, Luis |
description | The operator square root of the Laplacian (− ▵)
1/2
can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this article, we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems. |
doi_str_mv | 10.1080/03605300600987306 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_03605300600987306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03605300600987306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3</originalsourceid><addsrcrecordid>eNqFj0FLAzEQhYMoWKs_wFv-wOpkJ5vNgpdSWhUKiuh5mU0TXEk3JQnY_nu31FsReYc5vPfN4zF2K-BOgIZ7QAUVAiiARtcI6oxNRIVlIQXiOZsc_GIMlJfsKqUvAKHLRk6Yng18sct2SH0Y-GsMnbcb_mY9ZbvmOfD8afkyksmjT56vaOvJ9DRcswtHPtmb3ztlH8vF-_ypWL08Ps9nq8KgbnLRaKqNw1op2RiNulaORmlr0VUGjAWUpLpq3ZGRKDRoi10tZIXkSpIdTpk4_jUxpBSta7ex31DctwLaw_T2ZPrI1EemH1yIG_oO0a_bTHsfoos0mD6dUm3e5ZF8-JfEv4t_AMzvcHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Extension Problem Related to the Fractional Laplacian</title><source>Taylor and Francis Science and Technology Collection</source><creator>Caffarelli, Luis ; Silvestre, Luis</creator><creatorcontrib>Caffarelli, Luis ; Silvestre, Luis</creatorcontrib><description>The operator square root of the Laplacian (− ▵)
1/2
can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this article, we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605300600987306</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Degenerate elliptic equations ; Fractional Laplacian</subject><ispartof>Communications in partial differential equations, 2007-08, Vol.32 (8), p.1245-1260</ispartof><rights>Copyright Taylor & Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3</citedby><cites>FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Caffarelli, Luis</creatorcontrib><creatorcontrib>Silvestre, Luis</creatorcontrib><title>An Extension Problem Related to the Fractional Laplacian</title><title>Communications in partial differential equations</title><description>The operator square root of the Laplacian (− ▵)
1/2
can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this article, we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems.</description><subject>Degenerate elliptic equations</subject><subject>Fractional Laplacian</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFj0FLAzEQhYMoWKs_wFv-wOpkJ5vNgpdSWhUKiuh5mU0TXEk3JQnY_nu31FsReYc5vPfN4zF2K-BOgIZ7QAUVAiiARtcI6oxNRIVlIQXiOZsc_GIMlJfsKqUvAKHLRk6Yng18sct2SH0Y-GsMnbcb_mY9ZbvmOfD8afkyksmjT56vaOvJ9DRcswtHPtmb3ztlH8vF-_ypWL08Ps9nq8KgbnLRaKqNw1op2RiNulaORmlr0VUGjAWUpLpq3ZGRKDRoi10tZIXkSpIdTpk4_jUxpBSta7ex31DctwLaw_T2ZPrI1EemH1yIG_oO0a_bTHsfoos0mD6dUm3e5ZF8-JfEv4t_AMzvcHQ</recordid><startdate>20070808</startdate><enddate>20070808</enddate><creator>Caffarelli, Luis</creator><creator>Silvestre, Luis</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070808</creationdate><title>An Extension Problem Related to the Fractional Laplacian</title><author>Caffarelli, Luis ; Silvestre, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Degenerate elliptic equations</topic><topic>Fractional Laplacian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caffarelli, Luis</creatorcontrib><creatorcontrib>Silvestre, Luis</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caffarelli, Luis</au><au>Silvestre, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extension Problem Related to the Fractional Laplacian</atitle><jtitle>Communications in partial differential equations</jtitle><date>2007-08-08</date><risdate>2007</risdate><volume>32</volume><issue>8</issue><spage>1245</spage><epage>1260</epage><pages>1245-1260</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>The operator square root of the Laplacian (− ▵)
1/2
can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. In this article, we obtain similar characterizations for general fractional powers of the Laplacian and other integro-differential operators. From those characterizations we derive some properties of these integro-differential equations from purely local arguments in the extension problems.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/03605300600987306</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2007-08, Vol.32 (8), p.1245-1260 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_03605300600987306 |
source | Taylor and Francis Science and Technology Collection |
subjects | Degenerate elliptic equations Fractional Laplacian |
title | An Extension Problem Related to the Fractional Laplacian |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extension%20Problem%20Related%20to%20the%20Fractional%20Laplacian&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Caffarelli,%20Luis&rft.date=2007-08-08&rft.volume=32&rft.issue=8&rft.spage=1245&rft.epage=1260&rft.pages=1245-1260&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605300600987306&rft_dat=%3Ccrossref_infor%3E10_1080_03605300600987306%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-98a7cf376649c83876fafaf8ee3f5c0ce034a6b5dbac431808e3b71453af2a4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |