Loading…
Mesoscale Modeling of Amphiphilic Fluid Dynamics
So-called "vector models", in which surfactant molecules retain only translational and orientational degrees of freedom, have been used to study the equilibrium properties of amphiphilic fluids for nearly a decade now. We demonstrate that hydrodynamic lattice-gas automata provide an effect...
Saved in:
Published in: | Molecular simulation 2001-01, Vol.26 (1), p.85-100 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | So-called "vector models", in which surfactant molecules retain only translational and orientational degrees of freedom, have been used to study the equilibrium properties of amphiphilic fluids for nearly a decade now. We demonstrate that hydrodynamic lattice-gas automata provide an effective means of coupling the Hamiltonian of such vector models to hydrodynamic flow with conserved momentum, thereby providing a self-consistent treatment of the hydrodynamics of amphiphilic fluids. In this "talk", we describe these hydrodynamic lattice-gas models in two and three dimensions, and present their application to problems of amphiphilic-fluid hydrodynamics, including the dynamics of phase separation and the shear-induced sponge-to-lamellar phase transition. |
---|---|
ISSN: | 0892-7022 1029-0435 |
DOI: | 10.1080/08927020108024202 |