Loading…
Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector
Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈3...
Saved in:
Published in: | Journal of modern optics 2009-01, Vol.56 (2-3), p.345-351 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈30% of the ultimate value, which is physically limited to the absorbance of the detector structure. The intrinsic quantum efficiency is most likely controlled by non-homogeneities of the niobium nitride films. We have developed an electro-thermal model of the detector response that allowed us to optimize the SQUID-based readout and to achieve, in the temperature range from 1 to 6 K, the photon count rate 3 × 10
7
s
−1
and a dark count rate less than 10
−4
s
−1
. |
---|---|
ISSN: | 0950-0340 1362-3044 |
DOI: | 10.1080/09500340802578589 |