Loading…

Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector

Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈3...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern optics 2009-01, Vol.56 (2-3), p.345-351
Main Authors: Semenov, Alexei, Haas, Philipp, Hübers, Heinz-Wilhelm, Ilin, Konstantin, Siegel, Michael, Kirste, Alexander, Drung, Dietemar, Schurig, Thomas, Engel, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3
cites cdi_FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3
container_end_page 351
container_issue 2-3
container_start_page 345
container_title Journal of modern optics
container_volume 56
creator Semenov, Alexei
Haas, Philipp
Hübers, Heinz-Wilhelm
Ilin, Konstantin
Siegel, Michael
Kirste, Alexander
Drung, Dietemar
Schurig, Thomas
Engel, Andreas
description Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈30% of the ultimate value, which is physically limited to the absorbance of the detector structure. The intrinsic quantum efficiency is most likely controlled by non-homogeneities of the niobium nitride films. We have developed an electro-thermal model of the detector response that allowed us to optimize the SQUID-based readout and to achieve, in the temperature range from 1 to 6 K, the photon count rate 3 × 10 7 s −1 and a dark count rate less than 10 −4 s −1 .
doi_str_mv 10.1080/09500340802578589
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_09500340802578589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33808598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3</originalsourceid><addsrcrecordid>eNqFkE1rFTEUhoMoeK39Ae6CoLvRfM1MAm6kVC0UumnXITc5samZ5DbJUO-_N5dbXVjE1ckhz_NyeBF6Q8kHSiT5SNRICBf9ycZZjlI9QxvKJzZwIsRztDn8DwfgJXpV6x0hZCKcbdCPi9RKSDVYfL-a1NYFg_fBBkh2j01yGCLYVvLQbqEsJuIlO4g4e2xwXXdQbE5utS2k7ziZlB9CAVz7FmHY3eaWE3bQekQur9ELb2KF08d5gm6-nF-ffRsur75enH2-HKyY5zYoD5aPzgAwxtTWCykEM9LNEyXTVilrzTgbC9SJSU2OGku54OCJUVwA2fIT9P6Yuyv5foXa9BKqhRhNgrxWzbkkclSyg2__Au_yWlK_TTNOOaWC8g7RI2RLrrWA17sSFlP2mhJ96F4_6b477x6DTbUm-mKSDfWPyChno2Skc_ORC8nn3u5DLtHpZvYxl9_Sk3TdfrZufvqvyf994C9YlarS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>231311413</pqid></control><display><type>article</type><title>Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector</title><source>Taylor and Francis Science and Technology Collection</source><creator>Semenov, Alexei ; Haas, Philipp ; Hübers, Heinz-Wilhelm ; Ilin, Konstantin ; Siegel, Michael ; Kirste, Alexander ; Drung, Dietemar ; Schurig, Thomas ; Engel, Andreas</creator><creatorcontrib>Semenov, Alexei ; Haas, Philipp ; Hübers, Heinz-Wilhelm ; Ilin, Konstantin ; Siegel, Michael ; Kirste, Alexander ; Drung, Dietemar ; Schurig, Thomas ; Engel, Andreas</creatorcontrib><description>Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈30% of the ultimate value, which is physically limited to the absorbance of the detector structure. The intrinsic quantum efficiency is most likely controlled by non-homogeneities of the niobium nitride films. We have developed an electro-thermal model of the detector response that allowed us to optimize the SQUID-based readout and to achieve, in the temperature range from 1 to 6 K, the photon count rate 3 × 10 7 s −1 and a dark count rate less than 10 −4 s −1 .</description><identifier>ISSN: 0950-0340</identifier><identifier>EISSN: 1362-3044</identifier><identifier>DOI: 10.1080/09500340802578589</identifier><identifier>CODEN: JMOPEW</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Atoms &amp; subatomic particles ; electro-thermal normal domain ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; nanowire single-photon detectors ; Nanowires ; Optics ; Physics ; quantum efficiency ; Quantum optics ; Quantum theory ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; SQUID readout ; Superconductors ; Thin films</subject><ispartof>Journal of modern optics, 2009-01, Vol.56 (2-3), p.345-351</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2009</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. Jan 20-Feb 10, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3</citedby><cites>FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23917,23918,25127,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21325820$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Semenov, Alexei</creatorcontrib><creatorcontrib>Haas, Philipp</creatorcontrib><creatorcontrib>Hübers, Heinz-Wilhelm</creatorcontrib><creatorcontrib>Ilin, Konstantin</creatorcontrib><creatorcontrib>Siegel, Michael</creatorcontrib><creatorcontrib>Kirste, Alexander</creatorcontrib><creatorcontrib>Drung, Dietemar</creatorcontrib><creatorcontrib>Schurig, Thomas</creatorcontrib><creatorcontrib>Engel, Andreas</creatorcontrib><title>Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector</title><title>Journal of modern optics</title><description>Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈30% of the ultimate value, which is physically limited to the absorbance of the detector structure. The intrinsic quantum efficiency is most likely controlled by non-homogeneities of the niobium nitride films. We have developed an electro-thermal model of the detector response that allowed us to optimize the SQUID-based readout and to achieve, in the temperature range from 1 to 6 K, the photon count rate 3 × 10 7 s −1 and a dark count rate less than 10 −4 s −1 .</description><subject>Atoms &amp; subatomic particles</subject><subject>electro-thermal normal domain</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>nanowire single-photon detectors</subject><subject>Nanowires</subject><subject>Optics</subject><subject>Physics</subject><subject>quantum efficiency</subject><subject>Quantum optics</subject><subject>Quantum theory</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>SQUID readout</subject><subject>Superconductors</subject><subject>Thin films</subject><issn>0950-0340</issn><issn>1362-3044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rFTEUhoMoeK39Ae6CoLvRfM1MAm6kVC0UumnXITc5samZ5DbJUO-_N5dbXVjE1ckhz_NyeBF6Q8kHSiT5SNRICBf9ycZZjlI9QxvKJzZwIsRztDn8DwfgJXpV6x0hZCKcbdCPi9RKSDVYfL-a1NYFg_fBBkh2j01yGCLYVvLQbqEsJuIlO4g4e2xwXXdQbE5utS2k7ziZlB9CAVz7FmHY3eaWE3bQekQur9ELb2KF08d5gm6-nF-ffRsur75enH2-HKyY5zYoD5aPzgAwxtTWCykEM9LNEyXTVilrzTgbC9SJSU2OGku54OCJUVwA2fIT9P6Yuyv5foXa9BKqhRhNgrxWzbkkclSyg2__Au_yWlK_TTNOOaWC8g7RI2RLrrWA17sSFlP2mhJ96F4_6b477x6DTbUm-mKSDfWPyChno2Skc_ORC8nn3u5DLtHpZvYxl9_Sk3TdfrZufvqvyf994C9YlarS</recordid><startdate>20090120</startdate><enddate>20090120</enddate><creator>Semenov, Alexei</creator><creator>Haas, Philipp</creator><creator>Hübers, Heinz-Wilhelm</creator><creator>Ilin, Konstantin</creator><creator>Siegel, Michael</creator><creator>Kirste, Alexander</creator><creator>Drung, Dietemar</creator><creator>Schurig, Thomas</creator><creator>Engel, Andreas</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090120</creationdate><title>Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector</title><author>Semenov, Alexei ; Haas, Philipp ; Hübers, Heinz-Wilhelm ; Ilin, Konstantin ; Siegel, Michael ; Kirste, Alexander ; Drung, Dietemar ; Schurig, Thomas ; Engel, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>electro-thermal normal domain</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>nanowire single-photon detectors</topic><topic>Nanowires</topic><topic>Optics</topic><topic>Physics</topic><topic>quantum efficiency</topic><topic>Quantum optics</topic><topic>Quantum theory</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>SQUID readout</topic><topic>Superconductors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenov, Alexei</creatorcontrib><creatorcontrib>Haas, Philipp</creatorcontrib><creatorcontrib>Hübers, Heinz-Wilhelm</creatorcontrib><creatorcontrib>Ilin, Konstantin</creatorcontrib><creatorcontrib>Siegel, Michael</creatorcontrib><creatorcontrib>Kirste, Alexander</creatorcontrib><creatorcontrib>Drung, Dietemar</creatorcontrib><creatorcontrib>Schurig, Thomas</creatorcontrib><creatorcontrib>Engel, Andreas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of modern optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenov, Alexei</au><au>Haas, Philipp</au><au>Hübers, Heinz-Wilhelm</au><au>Ilin, Konstantin</au><au>Siegel, Michael</au><au>Kirste, Alexander</au><au>Drung, Dietemar</au><au>Schurig, Thomas</au><au>Engel, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector</atitle><jtitle>Journal of modern optics</jtitle><date>2009-01-20</date><risdate>2009</risdate><volume>56</volume><issue>2-3</issue><spage>345</spage><epage>351</epage><pages>345-351</pages><issn>0950-0340</issn><eissn>1362-3044</eissn><coden>JMOPEW</coden><abstract>Superconducting single-photon detectors from thin niobium nitride nanostrips exhibit a cut-off of the wavelength-independent quantum efficiency along with a moderate energy resolution in the near-infrared spectral range. Before the cut-off, the intrinsic quantum efficiency of the detector reaches ≈30% of the ultimate value, which is physically limited to the absorbance of the detector structure. The intrinsic quantum efficiency is most likely controlled by non-homogeneities of the niobium nitride films. We have developed an electro-thermal model of the detector response that allowed us to optimize the SQUID-based readout and to achieve, in the temperature range from 1 to 6 K, the photon count rate 3 × 10 7 s −1 and a dark count rate less than 10 −4 s −1 .</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/09500340802578589</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-0340
ispartof Journal of modern optics, 2009-01, Vol.56 (2-3), p.345-351
issn 0950-0340
1362-3044
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_09500340802578589
source Taylor and Francis Science and Technology Collection
subjects Atoms & subatomic particles
electro-thermal normal domain
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
nanowire single-photon detectors
Nanowires
Optics
Physics
quantum efficiency
Quantum optics
Quantum theory
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
SQUID readout
Superconductors
Thin films
title Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20quantum%20efficiency%20and%20electro-thermal%20model%20of%20a%20superconducting%20nanowire%20single-photon%20detector&rft.jtitle=Journal%20of%20modern%20optics&rft.au=Semenov,%20Alexei&rft.date=2009-01-20&rft.volume=56&rft.issue=2-3&rft.spage=345&rft.epage=351&rft.pages=345-351&rft.issn=0950-0340&rft.eissn=1362-3044&rft.coden=JMOPEW&rft_id=info:doi/10.1080/09500340802578589&rft_dat=%3Cproquest_infor%3E33808598%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-9fec35daee2229bf48442a8d76106b99cca57ace1d4696d1ac1343ef0a934e0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=231311413&rft_id=info:pmid/&rfr_iscdi=true