Loading…
Development of cryogenic prototyping for tissue engineering
A major challenge in tissue engineering has been the creation of scaffolds with controlled complex geometries. Rapid prototyping (RP) has the ability to produce complex three-dimensional structures with precise control of pore size, geometry and connectivity. In this paper, a novel technique utilisi...
Saved in:
Published in: | Virtual and physical prototyping 2008-03, Vol.3 (1), p.25-31 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A major challenge in tissue engineering has been the creation of scaffolds with controlled complex geometries. Rapid prototyping (RP) has the ability to produce complex three-dimensional structures with precise control of pore size, geometry and connectivity. In this paper, a novel technique utilising RP technology for the fabrication of tissue engineering scaffolds is presented. The main advantage of this cryogenic prototyping (CP) technique is the low operating temperatures which will allow the processing of temperature sensitive and bioactive components. Microstructure of CP Chitosan scaffolds fabricated can be controlled by processing parameters, such as the processing temperature. The macrostructure of the scaffolds is controlled by 3D computer aided design (CAD). In addition, in vitro studies with Chitosan CP scaffolds have shown that the scaffold designs are useful in promoting cell infiltration and alignment. Preliminary in vivo studies show encouraging results of cellular infiltration as well as vascularisation. |
---|---|
ISSN: | 1745-2759 1745-2767 |
DOI: | 10.1080/17452750701799303 |