Loading…
On limit functions and their natural boundaries in infinite compositions of entire functions
In this article, we consider infinite sequences {Φ n } of entire functions in the complex plane C defined as compositions of the form where each f n , n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f n }, and for the c...
Saved in:
Published in: | Complex variables and elliptic equations 2007-09, Vol.52 (9), p.807-825 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093 |
container_end_page | 825 |
container_issue | 9 |
container_start_page | 807 |
container_title | Complex variables and elliptic equations |
container_volume | 52 |
creator | Maalouf, Ramez N. |
description | In this article, we consider infinite sequences {Φ
n
} of entire functions in the complex plane C defined as compositions of the form
where each f
n
, n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f
n
}, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ
n
} converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f
n
's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a
n
} of a one parameter family of entire functions f
n
(z) = f (a
n,z
), whose composition as in (
1
) converges in some domain to Φ. |
doi_str_mv | 10.1080/17476930701627561 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_17476930701627561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17476930701627561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKsP4F1eYDWTZJMueCPFPyj0Ru-EkOYHI7tJSVK0b--Wil4UFAbOMMN34ByELoFcAZmRa5Bcio4RSUBQ2Qo4QpPdrREdh-OfnbFTdFbKOyG85YJM0Osy4j4MoWK_iaaGFAvW0eL65kLGUddN1j1epU20OgdXcIjj-BBDddikYZ1K2FPJYxdryO7X6RydeN0Xd_GtU_Ryf_c8f2wWy4en-e2iMcAZNEZyIQkx0oBhQlvNWljZdkWFgY7OjBXCAxjPOk_Hn6Utaymn1DkG3JOOTRHsfU1OpWTn1TqHQeetAqJ29aiDekbmZs-MaVIe9EfKvVVVb_uUfdbRhKLYX7j8Fz-gVP2s7AuGxH5D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On limit functions and their natural boundaries in infinite compositions of entire functions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Maalouf, Ramez N.</creator><creatorcontrib>Maalouf, Ramez N.</creatorcontrib><description>In this article, we consider infinite sequences {Φ
n
} of entire functions in the complex plane C defined as compositions of the form
where each f
n
, n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f
n
}, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ
n
} converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f
n
's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a
n
} of a one parameter family of entire functions f
n
(z) = f (a
n,z
), whose composition as in (
1
) converges in some domain to Φ.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476930701627561</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>AMS Subject Classifications ; Boundary behaviour of analytic functions ; Composition of entire functions ; Entire functions ; Iteration of analytic functions</subject><ispartof>Complex variables and elliptic equations, 2007-09, Vol.52 (9), p.807-825</ispartof><rights>Copyright Taylor & Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maalouf, Ramez N.</creatorcontrib><title>On limit functions and their natural boundaries in infinite compositions of entire functions</title><title>Complex variables and elliptic equations</title><description>In this article, we consider infinite sequences {Φ
n
} of entire functions in the complex plane C defined as compositions of the form
where each f
n
, n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f
n
}, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ
n
} converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f
n
's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a
n
} of a one parameter family of entire functions f
n
(z) = f (a
n,z
), whose composition as in (
1
) converges in some domain to Φ.</description><subject>AMS Subject Classifications</subject><subject>Boundary behaviour of analytic functions</subject><subject>Composition of entire functions</subject><subject>Entire functions</subject><subject>Iteration of analytic functions</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKsP4F1eYDWTZJMueCPFPyj0Ru-EkOYHI7tJSVK0b--Wil4UFAbOMMN34ByELoFcAZmRa5Bcio4RSUBQ2Qo4QpPdrREdh-OfnbFTdFbKOyG85YJM0Osy4j4MoWK_iaaGFAvW0eL65kLGUddN1j1epU20OgdXcIjj-BBDddikYZ1K2FPJYxdryO7X6RydeN0Xd_GtU_Ryf_c8f2wWy4en-e2iMcAZNEZyIQkx0oBhQlvNWljZdkWFgY7OjBXCAxjPOk_Hn6Utaymn1DkG3JOOTRHsfU1OpWTn1TqHQeetAqJ29aiDekbmZs-MaVIe9EfKvVVVb_uUfdbRhKLYX7j8Fz-gVP2s7AuGxH5D</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Maalouf, Ramez N.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070901</creationdate><title>On limit functions and their natural boundaries in infinite compositions of entire functions</title><author>Maalouf, Ramez N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AMS Subject Classifications</topic><topic>Boundary behaviour of analytic functions</topic><topic>Composition of entire functions</topic><topic>Entire functions</topic><topic>Iteration of analytic functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maalouf, Ramez N.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maalouf, Ramez N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On limit functions and their natural boundaries in infinite compositions of entire functions</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>52</volume><issue>9</issue><spage>807</spage><epage>825</epage><pages>807-825</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>In this article, we consider infinite sequences {Φ
n
} of entire functions in the complex plane C defined as compositions of the form
where each f
n
, n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f
n
}, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ
n
} converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f
n
's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a
n
} of a one parameter family of entire functions f
n
(z) = f (a
n,z
), whose composition as in (
1
) converges in some domain to Φ.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/17476930701627561</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1747-6933 |
ispartof | Complex variables and elliptic equations, 2007-09, Vol.52 (9), p.807-825 |
issn | 1747-6933 1747-6941 |
language | eng |
recordid | cdi_informaworld_taylorfrancis_310_1080_17476930701627561 |
source | Taylor and Francis Science and Technology Collection |
subjects | AMS Subject Classifications Boundary behaviour of analytic functions Composition of entire functions Entire functions Iteration of analytic functions |
title | On limit functions and their natural boundaries in infinite compositions of entire functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20limit%20functions%20and%20their%20natural%20boundaries%20in%20infinite%20compositions%20of%20entire%20functions&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Maalouf,%20Ramez%20N.&rft.date=2007-09-01&rft.volume=52&rft.issue=9&rft.spage=807&rft.epage=825&rft.pages=807-825&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476930701627561&rft_dat=%3Ccrossref_infor%3E10_1080_17476930701627561%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |