Loading…

On limit functions and their natural boundaries in infinite compositions of entire functions

In this article, we consider infinite sequences {Φ n } of entire functions in the complex plane C defined as compositions of the form where each f n , n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f n }, and for the c...

Full description

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations 2007-09, Vol.52 (9), p.807-825
Main Author: Maalouf, Ramez N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093
container_end_page 825
container_issue 9
container_start_page 807
container_title Complex variables and elliptic equations
container_volume 52
creator Maalouf, Ramez N.
description In this article, we consider infinite sequences {Φ n } of entire functions in the complex plane C defined as compositions of the form where each f n , n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f n }, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ n } converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f n 's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a n } of a one parameter family of entire functions f n (z) = f (a n,z ), whose composition as in ( 1 ) converges in some domain to Φ.
doi_str_mv 10.1080/17476930701627561
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_informaworld_taylorfrancis_310_1080_17476930701627561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17476930701627561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKsP4F1eYDWTZJMueCPFPyj0Ru-EkOYHI7tJSVK0b--Wil4UFAbOMMN34ByELoFcAZmRa5Bcio4RSUBQ2Qo4QpPdrREdh-OfnbFTdFbKOyG85YJM0Osy4j4MoWK_iaaGFAvW0eL65kLGUddN1j1epU20OgdXcIjj-BBDddikYZ1K2FPJYxdryO7X6RydeN0Xd_GtU_Ryf_c8f2wWy4en-e2iMcAZNEZyIQkx0oBhQlvNWljZdkWFgY7OjBXCAxjPOk_Hn6Utaymn1DkG3JOOTRHsfU1OpWTn1TqHQeetAqJ29aiDekbmZs-MaVIe9EfKvVVVb_uUfdbRhKLYX7j8Fz-gVP2s7AuGxH5D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On limit functions and their natural boundaries in infinite compositions of entire functions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Maalouf, Ramez N.</creator><creatorcontrib>Maalouf, Ramez N.</creatorcontrib><description>In this article, we consider infinite sequences {Φ n } of entire functions in the complex plane C defined as compositions of the form where each f n , n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f n }, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ n } converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f n 's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a n } of a one parameter family of entire functions f n (z) = f (a n,z ), whose composition as in ( 1 ) converges in some domain to Φ.</description><identifier>ISSN: 1747-6933</identifier><identifier>EISSN: 1747-6941</identifier><identifier>DOI: 10.1080/17476930701627561</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>AMS Subject Classifications ; Boundary behaviour of analytic functions ; Composition of entire functions ; Entire functions ; Iteration of analytic functions</subject><ispartof>Complex variables and elliptic equations, 2007-09, Vol.52 (9), p.807-825</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maalouf, Ramez N.</creatorcontrib><title>On limit functions and their natural boundaries in infinite compositions of entire functions</title><title>Complex variables and elliptic equations</title><description>In this article, we consider infinite sequences {Φ n } of entire functions in the complex plane C defined as compositions of the form where each f n , n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f n }, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ n } converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f n 's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a n } of a one parameter family of entire functions f n (z) = f (a n,z ), whose composition as in ( 1 ) converges in some domain to Φ.</description><subject>AMS Subject Classifications</subject><subject>Boundary behaviour of analytic functions</subject><subject>Composition of entire functions</subject><subject>Entire functions</subject><subject>Iteration of analytic functions</subject><issn>1747-6933</issn><issn>1747-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KAzEQhYMoWKsP4F1eYDWTZJMueCPFPyj0Ru-EkOYHI7tJSVK0b--Wil4UFAbOMMN34ByELoFcAZmRa5Bcio4RSUBQ2Qo4QpPdrREdh-OfnbFTdFbKOyG85YJM0Osy4j4MoWK_iaaGFAvW0eL65kLGUddN1j1epU20OgdXcIjj-BBDddikYZ1K2FPJYxdryO7X6RydeN0Xd_GtU_Ryf_c8f2wWy4en-e2iMcAZNEZyIQkx0oBhQlvNWljZdkWFgY7OjBXCAxjPOk_Hn6Utaymn1DkG3JOOTRHsfU1OpWTn1TqHQeetAqJ29aiDekbmZs-MaVIe9EfKvVVVb_uUfdbRhKLYX7j8Fz-gVP2s7AuGxH5D</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Maalouf, Ramez N.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070901</creationdate><title>On limit functions and their natural boundaries in infinite compositions of entire functions</title><author>Maalouf, Ramez N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>AMS Subject Classifications</topic><topic>Boundary behaviour of analytic functions</topic><topic>Composition of entire functions</topic><topic>Entire functions</topic><topic>Iteration of analytic functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maalouf, Ramez N.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex variables and elliptic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maalouf, Ramez N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On limit functions and their natural boundaries in infinite compositions of entire functions</atitle><jtitle>Complex variables and elliptic equations</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>52</volume><issue>9</issue><spage>807</spage><epage>825</epage><pages>807-825</pages><issn>1747-6933</issn><eissn>1747-6941</eissn><abstract>In this article, we consider infinite sequences {Φ n } of entire functions in the complex plane C defined as compositions of the form where each f n , n = 1, 2, ... , is an entire function, and the limit functions Φ of such sequences. Under reasonable conditions on the sequence {f n }, and for the cases where Φ exists and is a nonconstant analytic function, one finds that the boundary of the domain where {Φ n } converges to Φ is in fact the natural boundary of Φ, and that this boundary satisfies certain "expansion" properties when considered under the composition of the f n 's. We also consider the case of constant limit functions Φ. In the final section we discuss the connection between the coefficients of a power series representation of a nonconstant limit Φ and the sequence {a n } of a one parameter family of entire functions f n (z) = f (a n,z ), whose composition as in ( 1 ) converges in some domain to Φ.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/17476930701627561</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1747-6933
ispartof Complex variables and elliptic equations, 2007-09, Vol.52 (9), p.807-825
issn 1747-6933
1747-6941
language eng
recordid cdi_informaworld_taylorfrancis_310_1080_17476930701627561
source Taylor and Francis Science and Technology Collection
subjects AMS Subject Classifications
Boundary behaviour of analytic functions
Composition of entire functions
Entire functions
Iteration of analytic functions
title On limit functions and their natural boundaries in infinite compositions of entire functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20limit%20functions%20and%20their%20natural%20boundaries%20in%20infinite%20compositions%20of%20entire%20functions&rft.jtitle=Complex%20variables%20and%20elliptic%20equations&rft.au=Maalouf,%20Ramez%20N.&rft.date=2007-09-01&rft.volume=52&rft.issue=9&rft.spage=807&rft.epage=825&rft.pages=807-825&rft.issn=1747-6933&rft.eissn=1747-6941&rft_id=info:doi/10.1080/17476930701627561&rft_dat=%3Ccrossref_infor%3E10_1080_17476930701627561%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1431-c746700c7c1c36ada351bd5b26c1928cd66f11cf39f2a35d25352422ee314f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true