Loading…

Thermocouples for High-Temperature In-Pile Testing

Traditional methods for measuring in-pile temperatures degrade above 1100°C. Hence, the Idaho National Laboratory (INL) initiated a project to explore the use of specialized thermocouples for high temperature in-pile applications. Efforts to develop, fabricate, and evaluate specialized high-temperat...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear technology 2006-12, Vol.156 (3), p.320-331
Main Authors: Rempe, J. L., Knudson, D. L., Condie, K. G., Wilkins, S. Curtis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional methods for measuring in-pile temperatures degrade above 1100°C. Hence, the Idaho National Laboratory (INL) initiated a project to explore the use of specialized thermocouples for high temperature in-pile applications. Efforts to develop, fabricate, and evaluate specialized high-temperature thermocouples for in-pile applications suggest that several material combinations are viable. Tests show that several low-neutron cross-section candidate materials resist material interactions and remain ductile at high temperatures. In addition, results indicate that the candidate thermoelements have a thermoelectric response that is single-valued and repeatable with acceptable resolution. The selection of the thermocouple materials depends on desired peak temperature and accuracy requirements. For applications at or above 1600°C, tests indicate that thermocouples having doped molybdenum and Nb-1%Zr thermoelement wires, HfO 2 insulation, and a Nb-1%Zr sheath could be used. INL has worked to optimize this thermocouple's stability. With appropriate heat treatment and fabrication approaches, results indicate that thermal cycling effects on this thermocouple's calibration is minimized. INL initiated a series of high-temperature (1200 to 1800°C) long-duration (up to 6 months) tests to assess the long-term stability of these thermocouples. Initial results indicate that the INL-developed thermocouple's thermoelectric response is very stable. Typically,
ISSN:0029-5450
1943-7471
DOI:10.13182/NT06-A3794