Loading…

Fluxes theory in experiments with random distributed channels on vesicles

When channels are randomly distributed in a population of vesicles, disregarding the number of channels per vesicle, these channels follow a Poisson distribution. This has been verified in many cases, determining the average of channels per vesicle. However, to determine kinetic parameters in popula...

Full description

Saved in:
Bibliographic Details
Published in:Channels (Austin, Tex.) Tex.), 2014-05, Vol.8 (3), p.258-263
Main Author: Salinas, Dino G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When channels are randomly distributed in a population of vesicles, disregarding the number of channels per vesicle, these channels follow a Poisson distribution. This has been verified in many cases, determining the average of channels per vesicle. However, to determine kinetic parameters in population studies, a mathematical expression for the mean flux of solute through channels per vesicle is necessary. Hence, here, this mean flux is calculated, assuming Poisson distributed channels in a population of vesicle. Moreover, this result has been generalized to any number of different kinds of channels (i.e., channels with different permeabilities). These results, useful for in vitro experiments with mixed both channels and vesicles, can be supplemented with those from other techniques, in order to understanding how the nature of the lipid membrane affects kinetic parameters of channel.
ISSN:1933-6950
1933-6969
DOI:10.4161/chan.28011