Loading…
The Same-Day Delivery Problem for Online Purchases
Same-day delivery for online purchases is a recent trend in online retail. We introduce a multi-vehicle dynamic pickup and delivery problem with time constraints that incorporates key features associated with same-day delivery logistics. To make better informed decisions, our solution approach incor...
Saved in:
Published in: | Transportation science 2019-01, Vol.53 (1), p.167-184 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3 |
container_end_page | 184 |
container_issue | 1 |
container_start_page | 167 |
container_title | Transportation science |
container_volume | 53 |
creator | Voccia, Stacy A. Campbell, Ann Melissa Thomas, Barrett W. |
description | Same-day delivery for online purchases is a recent trend in online retail. We introduce a multi-vehicle dynamic pickup and delivery problem with time constraints that incorporates key features associated with same-day delivery logistics. To make better informed decisions, our solution approach incorporates information about future requests into routing decisions. We also introduce an analytical result that identifies when it is beneficial for vehicles to wait at the depot. We present a wide range of computational experiments that demonstrate the value of our approach. The results show that more requests can be filled when time windows are evenly spread throughout the day compared to when many requests' time windows occur late in the day. However, the anticipation of future requests is most valuable when many requests' time windows occur late in the day. As a result of increased flexibility, experiments also demonstrate that the value of anticipating the future decreases when the number of vehicles or the arrival rate of requests increases.
The online appendix is available at
https://doi.org/10.1287/trsc.2016.0732
. |
doi_str_mv | 10.1287/trsc.2016.0732 |
format | article |
fullrecord | <record><control><sourceid>jstor_infor</sourceid><recordid>TN_cdi_informs_primary_10_1287_trsc_2016_0732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27296501</jstor_id><sourcerecordid>27296501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOKdXb0LBc-p7aZM0R9n8BYMN3D00aco6-mMmrbD_3paKV0_v8P3F-xByjxAjy-RT74ONGaCIQSbsgiyQM0F5mspLsgBIkaLg_JrchHAEQC6RLwjbH1z0mTeOrvNztHZ19e38Odr5ztSuicrOR9u2rloX7QZvD3lw4ZZclXkd3N3vXZL968t-9U4327eP1fOG2pTxnuYlpCxxxhamQAlFriCRKQcJyFRqlSqUlSXDhCF3IIwwBZgiyVypjOQ2WZLHufbku6_BhV4fu8G346JmmIkMMq746Ipnl_VdCN6V-uSrJvdnjaAnLHrCoicsesIyBh7mwDH0nf9zM8mU4ICjTme9asfnm_Bf3w-u92y6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186808595</pqid></control><display><type>article</type><title>The Same-Day Delivery Problem for Online Purchases</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Voccia, Stacy A. ; Campbell, Ann Melissa ; Thomas, Barrett W.</creator><creatorcontrib>Voccia, Stacy A. ; Campbell, Ann Melissa ; Thomas, Barrett W.</creatorcontrib><description>Same-day delivery for online purchases is a recent trend in online retail. We introduce a multi-vehicle dynamic pickup and delivery problem with time constraints that incorporates key features associated with same-day delivery logistics. To make better informed decisions, our solution approach incorporates information about future requests into routing decisions. We also introduce an analytical result that identifies when it is beneficial for vehicles to wait at the depot. We present a wide range of computational experiments that demonstrate the value of our approach. The results show that more requests can be filled when time windows are evenly spread throughout the day compared to when many requests' time windows occur late in the day. However, the anticipation of future requests is most valuable when many requests' time windows occur late in the day. As a result of increased flexibility, experiments also demonstrate that the value of anticipating the future decreases when the number of vehicles or the arrival rate of requests increases.
The online appendix is available at
https://doi.org/10.1287/trsc.2016.0732
.</description><identifier>ISSN: 0041-1655</identifier><identifier>EISSN: 1526-5447</identifier><identifier>DOI: 10.1287/trsc.2016.0732</identifier><language>eng</language><publisher>Baltimore: INFORMS</publisher><subject>Decision analysis ; Decision making ; Decisions ; dynamic vehicle routing ; Electric vehicles ; Flexibility ; Heuristic ; Logistics ; Routing ; same-day delivery ; time windows ; Transportation ; Windows ; Windows (intervals)</subject><ispartof>Transportation science, 2019-01, Vol.53 (1), p.167-184</ispartof><rights>2017 INFORMS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3</citedby><cites>FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3</cites><orcidid>0000-0002-6080-6191 ; 0000-0002-9927-687X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27296501$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27296501$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33200,58213,58446</link.rule.ids></links><search><creatorcontrib>Voccia, Stacy A.</creatorcontrib><creatorcontrib>Campbell, Ann Melissa</creatorcontrib><creatorcontrib>Thomas, Barrett W.</creatorcontrib><title>The Same-Day Delivery Problem for Online Purchases</title><title>Transportation science</title><description>Same-day delivery for online purchases is a recent trend in online retail. We introduce a multi-vehicle dynamic pickup and delivery problem with time constraints that incorporates key features associated with same-day delivery logistics. To make better informed decisions, our solution approach incorporates information about future requests into routing decisions. We also introduce an analytical result that identifies when it is beneficial for vehicles to wait at the depot. We present a wide range of computational experiments that demonstrate the value of our approach. The results show that more requests can be filled when time windows are evenly spread throughout the day compared to when many requests' time windows occur late in the day. However, the anticipation of future requests is most valuable when many requests' time windows occur late in the day. As a result of increased flexibility, experiments also demonstrate that the value of anticipating the future decreases when the number of vehicles or the arrival rate of requests increases.
The online appendix is available at
https://doi.org/10.1287/trsc.2016.0732
.</description><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decisions</subject><subject>dynamic vehicle routing</subject><subject>Electric vehicles</subject><subject>Flexibility</subject><subject>Heuristic</subject><subject>Logistics</subject><subject>Routing</subject><subject>same-day delivery</subject><subject>time windows</subject><subject>Transportation</subject><subject>Windows</subject><subject>Windows (intervals)</subject><issn>0041-1655</issn><issn>1526-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkM9LwzAUx4MoOKdXb0LBc-p7aZM0R9n8BYMN3D00aco6-mMmrbD_3paKV0_v8P3F-xByjxAjy-RT74ONGaCIQSbsgiyQM0F5mspLsgBIkaLg_JrchHAEQC6RLwjbH1z0mTeOrvNztHZ19e38Odr5ztSuicrOR9u2rloX7QZvD3lw4ZZclXkd3N3vXZL968t-9U4327eP1fOG2pTxnuYlpCxxxhamQAlFriCRKQcJyFRqlSqUlSXDhCF3IIwwBZgiyVypjOQ2WZLHufbku6_BhV4fu8G346JmmIkMMq746Ipnl_VdCN6V-uSrJvdnjaAnLHrCoicsesIyBh7mwDH0nf9zM8mU4ICjTme9asfnm_Bf3w-u92y6</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Voccia, Stacy A.</creator><creator>Campbell, Ann Melissa</creator><creator>Thomas, Barrett W.</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-6080-6191</orcidid><orcidid>https://orcid.org/0000-0002-9927-687X</orcidid></search><sort><creationdate>20190101</creationdate><title>The Same-Day Delivery Problem for Online Purchases</title><author>Voccia, Stacy A. ; Campbell, Ann Melissa ; Thomas, Barrett W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decisions</topic><topic>dynamic vehicle routing</topic><topic>Electric vehicles</topic><topic>Flexibility</topic><topic>Heuristic</topic><topic>Logistics</topic><topic>Routing</topic><topic>same-day delivery</topic><topic>time windows</topic><topic>Transportation</topic><topic>Windows</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voccia, Stacy A.</creatorcontrib><creatorcontrib>Campbell, Ann Melissa</creatorcontrib><creatorcontrib>Thomas, Barrett W.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Transportation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voccia, Stacy A.</au><au>Campbell, Ann Melissa</au><au>Thomas, Barrett W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Same-Day Delivery Problem for Online Purchases</atitle><jtitle>Transportation science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>53</volume><issue>1</issue><spage>167</spage><epage>184</epage><pages>167-184</pages><issn>0041-1655</issn><eissn>1526-5447</eissn><abstract>Same-day delivery for online purchases is a recent trend in online retail. We introduce a multi-vehicle dynamic pickup and delivery problem with time constraints that incorporates key features associated with same-day delivery logistics. To make better informed decisions, our solution approach incorporates information about future requests into routing decisions. We also introduce an analytical result that identifies when it is beneficial for vehicles to wait at the depot. We present a wide range of computational experiments that demonstrate the value of our approach. The results show that more requests can be filled when time windows are evenly spread throughout the day compared to when many requests' time windows occur late in the day. However, the anticipation of future requests is most valuable when many requests' time windows occur late in the day. As a result of increased flexibility, experiments also demonstrate that the value of anticipating the future decreases when the number of vehicles or the arrival rate of requests increases.
The online appendix is available at
https://doi.org/10.1287/trsc.2016.0732
.</abstract><cop>Baltimore</cop><pub>INFORMS</pub><doi>10.1287/trsc.2016.0732</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6080-6191</orcidid><orcidid>https://orcid.org/0000-0002-9927-687X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-1655 |
ispartof | Transportation science, 2019-01, Vol.53 (1), p.167-184 |
issn | 0041-1655 1526-5447 |
language | eng |
recordid | cdi_informs_primary_10_1287_trsc_2016_0732 |
source | International Bibliography of the Social Sciences (IBSS); JSTOR Archival Journals and Primary Sources Collection【Remote access available】; BSC - Ebsco (Business Source Ultimate) |
subjects | Decision analysis Decision making Decisions dynamic vehicle routing Electric vehicles Flexibility Heuristic Logistics Routing same-day delivery time windows Transportation Windows Windows (intervals) |
title | The Same-Day Delivery Problem for Online Purchases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Same-Day%20Delivery%20Problem%20for%20Online%20Purchases&rft.jtitle=Transportation%20science&rft.au=Voccia,%20Stacy%20A.&rft.date=2019-01-01&rft.volume=53&rft.issue=1&rft.spage=167&rft.epage=184&rft.pages=167-184&rft.issn=0041-1655&rft.eissn=1526-5447&rft_id=info:doi/10.1287/trsc.2016.0732&rft_dat=%3Cjstor_infor%3E27296501%3C/jstor_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-af0423ebcdbd170da9037450701294c99d9c7f213215e06b6bd0bd38ef9b75c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186808595&rft_id=info:pmid/&rft_jstor_id=27296501&rfr_iscdi=true |