Loading…
Melanin diagnostics with nonlinear optics: a mini-review
Optical methods are widely used to perform fundamental studies of living systems and solve problems of biomedical diagnostics. Along with the classical spectroscopy, methods of nonlinear optics (e.g., multiphoton microscopy) are also applied in biophotonics. The potential of nonlinear optical method...
Saved in:
Published in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2022-01, Vol.52 (1), p.28-35 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical methods are widely used to perform fundamental studies of living systems and solve problems of biomedical diagnostics. Along with the classical spectroscopy, methods of nonlinear optics (e.g., multiphoton microscopy) are also applied in biophotonics. The potential of nonlinear optical methods for visualisation and analysis of the properties of endogenous chromophore molecules are considered in this minireview. Melanin – a pigment with specific spectral features of photophysical properties in the visible and near-IR ranges – is taken as an example. It is discussed what information about its localisation in tissues and structural organisation can be obtained by nonlinear optical methods: multiphoton fluorescence microscopy (including fluorescence lifetime imaging), third harmonic generation, pump – probe spectroscopy, and coherent anti-Stokes Raman spectroscopy. |
---|---|
ISSN: | 1063-7818 1468-4799 |
DOI: | 10.1070/QEL17963 |