Loading…
A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations
The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of thi...
Saved in:
Published in: | Sbornik. Mathematics 2019-02, Vol.210 (2), p.184-233 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3 |
container_end_page | 233 |
container_issue | 2 |
container_start_page | 184 |
container_title | Sbornik. Mathematics |
container_volume | 210 |
creator | Glyzin, S. D. Kolesov, A. Yu Rozov, N. Kh |
description | The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of this system, such that a certain phase shift takes the coordinates of this solution back to this solution, are investigated. Bibliography: 19 titles. |
doi_str_mv | 10.1070/SM8941 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1070_SM8941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357589725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3</originalsourceid><addsrcrecordid>eNpd0F9LwzAUBfAgCs6pnyEo6FM1SfOvj2OoEyY-2PeS3SWYsTZbkiL99lYqCD7d-_DjHDgIXVPyQIkijx9vuuL0BM0ol7rgmrDT8SeSF0JSeY4uUtoRQgSjeobqBU5274o0tK3N0QOGAfYW-w4bnIaUbYuDw_kr4K13rh_xgCF0nYVst3jVZ_j0XQrdfcL22JvsQ5cu0Zkz-2Svfu8c1c9P9XJVrN9fXpeLdQFM6VyYEgw3Fd8YZZwWTAhgXAHwjdaqdKC0AUJAVqo0VBpOOVRbpiqpneR2U87R7RR7iOHY25SbXehjNzY2rBRK6EoxMaq7SUEMKUXrmkP0rYlDQ0nzM1gzDTbCmwn6cPhL-oe-AfP5Z-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357589725</pqid></control><display><type>article</type><title>A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations</title><source>Institute of Physics</source><creator>Glyzin, S. D. ; Kolesov, A. Yu ; Rozov, N. Kh</creator><creatorcontrib>Glyzin, S. D. ; Kolesov, A. Yu ; Rozov, N. Kh</creatorcontrib><description>The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of this system, such that a certain phase shift takes the coordinates of this solution back to this solution, are investigated. Bibliography: 19 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8941</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>asymptotic behaviour ; Asymptotic properties ; bi-local model ; Differential equations ; Hutchinson's equation ; Nonlinear equations ; self-symmetric cycle ; stability</subject><ispartof>Sbornik. Mathematics, 2019-02, Vol.210 (2), p.184-233</ispartof><rights>2019 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3</citedby><cites>FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Glyzin, S. D.</creatorcontrib><creatorcontrib>Kolesov, A. Yu</creatorcontrib><creatorcontrib>Rozov, N. Kh</creatorcontrib><title>A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of this system, such that a certain phase shift takes the coordinates of this solution back to this solution, are investigated. Bibliography: 19 titles.</description><subject>asymptotic behaviour</subject><subject>Asymptotic properties</subject><subject>bi-local model</subject><subject>Differential equations</subject><subject>Hutchinson's equation</subject><subject>Nonlinear equations</subject><subject>self-symmetric cycle</subject><subject>stability</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0F9LwzAUBfAgCs6pnyEo6FM1SfOvj2OoEyY-2PeS3SWYsTZbkiL99lYqCD7d-_DjHDgIXVPyQIkijx9vuuL0BM0ol7rgmrDT8SeSF0JSeY4uUtoRQgSjeobqBU5274o0tK3N0QOGAfYW-w4bnIaUbYuDw_kr4K13rh_xgCF0nYVst3jVZ_j0XQrdfcL22JvsQ5cu0Zkz-2Svfu8c1c9P9XJVrN9fXpeLdQFM6VyYEgw3Fd8YZZwWTAhgXAHwjdaqdKC0AUJAVqo0VBpOOVRbpiqpneR2U87R7RR7iOHY25SbXehjNzY2rBRK6EoxMaq7SUEMKUXrmkP0rYlDQ0nzM1gzDTbCmwn6cPhL-oe-AfP5Z-4</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Glyzin, S. D.</creator><creator>Kolesov, A. Yu</creator><creator>Rozov, N. Kh</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190201</creationdate><title>A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations</title><author>Glyzin, S. D. ; Kolesov, A. Yu ; Rozov, N. Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asymptotic behaviour</topic><topic>Asymptotic properties</topic><topic>bi-local model</topic><topic>Differential equations</topic><topic>Hutchinson's equation</topic><topic>Nonlinear equations</topic><topic>self-symmetric cycle</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glyzin, S. D.</creatorcontrib><creatorcontrib>Kolesov, A. Yu</creatorcontrib><creatorcontrib>Rozov, N. Kh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glyzin, S. D.</au><au>Kolesov, A. Yu</au><au>Rozov, N. Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>210</volume><issue>2</issue><spage>184</spage><epage>233</epage><pages>184-233</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The so-called bi-local model is considered for Hutchinson's equation. This is a system of two identical nonlinear delay differential equations connected by means of linear diffusion terms. The question of the existence, asymptotic behaviour and stability of a particular periodic solution of this system, such that a certain phase shift takes the coordinates of this solution back to this solution, are investigated. Bibliography: 19 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8941</doi><tpages>50</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2019-02, Vol.210 (2), p.184-233 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_iop_journals_10_1070_SM8941 |
source | Institute of Physics |
subjects | asymptotic behaviour Asymptotic properties bi-local model Differential equations Hutchinson's equation Nonlinear equations self-symmetric cycle stability |
title | A self-symmetric cycle in a system of two diffusely connected Hutchinson's equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-symmetric%20cycle%20in%20a%20system%20of%20two%20diffusely%20connected%20Hutchinson's%20equations&rft.jtitle=Sbornik.%20Mathematics&rft.au=Glyzin,%20S.%20D.&rft.date=2019-02-01&rft.volume=210&rft.issue=2&rft.spage=184&rft.epage=233&rft.pages=184-233&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8941&rft_dat=%3Cproquest_iop_j%3E2357589725%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-a3ca4a94ba7af85255c247cc4b8873fc78ac00c6973a16a414c9d27968f64eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357589725&rft_id=info:pmid/&rfr_iscdi=true |