Loading…
POTENTIAL GAMMA-RAY EMISSIONS FROM LOW-MASS X-RAY BINARY JETS
ABSTRACT By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by ma...
Saved in:
Published in: | The Astrophysical journal 2015-06, Vol.806 (2), p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by magnetic and proton-matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339-4. The results not only can reproduce the currently available observations from GX 339-4, but also predict detectable radiation at GeV and TeV bands by the Fermi and CTA telescopes. Future observations with Fermi and CTA can be used to test our model, which could be employed to distinguish the origin of X-ray emissions. |
---|---|
ISSN: | 0004-637X 1538-4357 1538-4357 |
DOI: | 10.1088/0004-637X/806/2/168 |