Loading…
Influence of geometrical parameters on performance of plasma synthetic jet actuator
Plasma synthetic jet actuator (PSJA) has shown wide and promising application prospects in a high speed flow control field, due to its rapid response, high exhaust velocity, and non-moving components. In this paper, the total pressure profile of a plasma synthetic jet (PSJ) is measured and a new met...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2015-11, Vol.49 (2), p.25504-25515 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plasma synthetic jet actuator (PSJA) has shown wide and promising application prospects in a high speed flow control field, due to its rapid response, high exhaust velocity, and non-moving components. In this paper, the total pressure profile of a plasma synthetic jet (PSJ) is measured and a new method is developed to evaluate the pulsed thrust of the PSJA. The influence of geometrical parameters including the electrode distance, the orifice diameter, and the throat length on PSJA performance is analyzed based on the pulsed thrust, the discharge characteristics, and the schlieren images. When varying the electrode distance, the dominant factor determining the jet intensity is the heating volume instead of the discharge energy. For the arc discharge, the electrode distance should be extended to increase both the jet velocity and the jet duration time. The design of the orifice diameter should be based on the controlled flow field. A large orifice diameter produces a strong perturbation with short time duration, while a small orifice diameter induces a lasting jet with low mass flux. In order to obtain better high frequency performance, the throat length should be shortened on the condition that the structural strength of the PSJA is maintained, while there is almost no influence of the throat length on the single cycle performance of the PSJA. Once the discharge energy is fixed, the pulsed thrust remains almost unchanged with different orifice diameters and throat lengths. These three geometrical parameters are independent to some extent and can be optimized separately. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/49/2/025504 |