Loading…

In vivo transcostal histotripsy therapy without aberration correction

This study investigates the in vivo therapeutic capabilities of transcostal histotripsy without using aberration correction mechanisms and its thermal impact on overlying tissues. Non-invasive liver treatments were conducted in eight pigs, with four lesions generated through transcostal windows with...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2014-06, Vol.59 (11), p.2553-2568
Main Authors: Kim, Y, Vlaisavljevich, E, Owens, G E, Allen, S P, Cain, C A, Xu, Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the in vivo therapeutic capabilities of transcostal histotripsy without using aberration correction mechanisms and its thermal impact on overlying tissues. Non-invasive liver treatments were conducted in eight pigs, with four lesions generated through transcostal windows with full ribcage obstruction and four lesions created through transabdominal windows without rib coverage. Treatments were performed by a 750 kHz focused transducer using 5 cycle pulses at 200 Hz PRF, with estimated in situ peak negative pressures of 13-17 MPa. Temperatures on overlying tissues including the ribs were measured with needle thermocouples inserted superficially beneath the skin. Treatments of approximately 40 min were applied, allowing overlying tissue temperatures to reach saturation. Lesions yielded statistically comparable ablation volumes of 3.6 ± 1.7 cm3 and 4.5 ± 2.0 cm3 in transcostal and transabdominal treatments, respectively. The average temperature increase observed in transcostal treatments was 3.9 ± 2.1 °C, while transabdominal treatments showed an increase of 1.7 ± 1.3 °C. No damage was seen on the ribcage or other overlying tissues. These results indicate that histotripsy can achieve effective treatment through the ribcage in vivo without requiring correction mechanisms, while inducing no substantial thermal effects or damage to overlying tissues. Such capabilities could benefit several non-invasive therapy applications involving transcostal treatment windows.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/59/11/2553