Loading…
Solving the Einstein constraints in periodic spaces with a multigrid approach
Novel applications of Numerical Relativity demand more flexible algorithms and tools. In this paper, I develop and test a multigrid solver, based on the infrastructure provided by the Einstein Toolkit, for elliptic partial differential equations on spaces with periodic boundary conditions (PBCs). Th...
Saved in:
Published in: | Classical and quantum gravity 2014-02, Vol.31 (3), p.35004 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel applications of Numerical Relativity demand more flexible algorithms and tools. In this paper, I develop and test a multigrid solver, based on the infrastructure provided by the Einstein Toolkit, for elliptic partial differential equations on spaces with periodic boundary conditions (PBCs). This type of boundary often characterizes the numerical representation of cosmological models, where space is assumed to be made up of identical copies of a single fiducial domain, so that only a finite volume (with PBCs at its edges) needs to be simulated. After a few tests and comparisons with existing codes, I use the solver to generate initial data for an infinite, periodic, cubic black-hole lattice. |
---|---|
ISSN: | 0264-9381 1361-6382 |
DOI: | 10.1088/0264-9381/31/3/035004 |