Loading…

Electron and negative ion dynamics in electronegative cc-rf plasmas

The line-integrated density of electrons and negative ions in asymmetric capacitively coupled oxygen rf plasmas are measured by 160.28 GHz microwave interferometry combined with simultaneous laser photodetachment. The high temporal resolution of the interferometer of 200 ns as well as an optimized p...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics and controlled fusion 2012-12, Vol.54 (12), p.124038
Main Authors: Dittmann, K, Küllig, C, Meichsner, J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The line-integrated density of electrons and negative ions in asymmetric capacitively coupled oxygen rf plasmas are measured by 160.28 GHz microwave interferometry combined with simultaneous laser photodetachment. The high temporal resolution of the interferometer of 200 ns as well as an optimized phase shift resolution of about 0.016° allows the investigation of discharge regimes with rather low electron densities down to 5 × 1014 m−3, fast fluctuations in the electron density due to plasma instabilities, pulsed mode operation as well as laser photodetachment. Additionally phase resolved optical emission spectroscopy is applied to investigate the fundamental physics of the excitation dynamics in the electronegative plasmas oxygen and tetrafluoromethane due to electron impact excitation. Electrons are heated by the rf sheath expansion (α-mode operation) and field reversal during sheath collapse. Secondary electrons are produced and heated during the expanded rf sheath (γ-mode operation) due to collisional detachment of negative ions and heavy particle bombardment of the electrode surface. Furthermore, the excitation due to fast heavy particle collisions in front of the electrode is discussed.
ISSN:0741-3335
1361-6587
DOI:10.1088/0741-3335/54/12/124038