Loading…
Efforts to achieve high-performance long-pulse operations in the EAST
To achieve long-pulse tokamak operation, sufficient current drive and self-generated current are required, with the challenges of the exhaust of the heat from the divertor plates. Experiments have proven that lower hybrid current drive (LHCD) can broaden the divertor power footprint and cause the sp...
Saved in:
Published in: | Plasma physics and controlled fusion 2016-01, Vol.58 (1), p.14029-8 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To achieve long-pulse tokamak operation, sufficient current drive and self-generated current are required, with the challenges of the exhaust of the heat from the divertor plates. Experiments have proven that lower hybrid current drive (LHCD) can broaden the divertor power footprint and cause the splitting of the strike point current and hence reduce the peak heat flux on the divertors. Edge localized mode (ELM) mitigation can be realized by supersonic molecule beam injection (SMBI), modulated LHCD, lithium granule and aerosol injection, as well as resonant magnetic perturbation (RMP). Enhanced transport by an electrostatic edge coherent mode at the pedestal region is observed in the ELM mitigated plasmas by LHCD. Long-pulse H-mode plasmas in the small ELMy regime have been demonstrated by a combination of ELM mitigation techniques and the optimization of the plasma confinement performance. These newly achieved H-mode scenarios by using features of LHCD in the control of steady-state peak heat flux and transient heat flux due to ELMs may offer a promising regime for further EAST long-pulse high-performance operation and be applicable to ITER. |
---|---|
ISSN: | 0741-3335 1361-6587 |
DOI: | 10.1088/0741-3335/58/1/014029 |