Loading…

Practical fit functions for transport critical current versus field magnitude and angle data from (RE)BCO coated conductors at fixed low temperatures and in high magnetic fields

Applications of (RE = Y, Gd)BCO coated conductors for the generation of high magnetic fields are increasing sharply, this while (RE)BCO coated conductors themselves are evolving rapidly. This article describes and demonstrates recently developed and applied mathematical models that systematically an...

Full description

Saved in:
Bibliographic Details
Published in:Superconductor science & technology 2015-06, Vol.28 (7), p.74002-9
Main Authors: Hilton, D K, Gavrilin, A V, Trociewitz, U P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Applications of (RE = Y, Gd)BCO coated conductors for the generation of high magnetic fields are increasing sharply, this while (RE)BCO coated conductors themselves are evolving rapidly. This article describes and demonstrates recently developed and applied mathematical models that systematically and comprehensively characterize the transport critical current angular dependence of a batch of (RE)BCO coated conductor in high magnetic fields at fixed temperatures with an uncertainty of 10% or better. The model development was based on analysis of experimental data sets from various published sources and coated conductors with different microstructures. These derivations directly are applicable to the accurate prediction of the performance in high magnetic fields of coils wound with (RE)BCO coated conductors. In particular, a nonlinear fit is discussed in this article of transport critical current at T = 4.2 K versus field and angle data. This fit was used to estimate the hysteresis losses of (RE)BCO coated conductors in high magnetic fields, and to design the inserts wound with such conductors of the all-superconducting 32 T magnet being constructed at the NHMFL. A series of such fits, recently developed at several fixed temperatures, continues to be used to simulate the quench behavior of that magnet.
ISSN:0953-2048
1361-6668
DOI:10.1088/0953-2048/28/7/074002