Loading…
Electromagnetically induced angular Talbot effect
The discrete angular spectrum (angular Talbot effect) of a periodic grating illuminated by a suitable spherical wave front has been observed recently (Azaña and Chatellus 2104 Phys. Rev. Lett. 112 213902). In this paper we study the possibility of such a phenomenon being realized with a medium that...
Saved in:
Published in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2015-12, Vol.48 (24), p.245502-245508 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discrete angular spectrum (angular Talbot effect) of a periodic grating illuminated by a suitable spherical wave front has been observed recently (Azaña and Chatellus 2104 Phys. Rev. Lett. 112 213902). In this paper we study the possibility of such a phenomenon being realized with a medium that has no macroperiodic structure itself. Tunable electromagnetically induced grating (EIG) could be such a kind of medium. We obtain an EIG based on the periodically modulated strong susceptibility due to the third-order nonlinear effect generated in a double Λ-type four-level atomic system, and show the angular Talbot effect of an amplitude EIG, as well as a hybrid EIG, as the condition of the discrete phase-modulation shift of the illumination light front is satisfied. EIG parameters are tunable and the EIG-based angular Talbot effect may have the same potential applications as its periodic grating counterpart has. |
---|---|
ISSN: | 0953-4075 1361-6455 |
DOI: | 10.1088/0953-4075/48/24/245502 |