Loading…

Stability of the different AlOOH phases under pressure

The pressure effects on three different AlOOH structures (α, γ, and δ phases) are systematically analyzed by density functional theory with different exchange and correlation energy functional approximations, namely two local, two generalized-gradient approximation (GGA), and two GGA for solids (GGA...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2016-05, Vol.28 (18), p.185401-185401
Main Authors: Cedillo, Andrés, Torrent, Marc, Cortona, Pietro
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pressure effects on three different AlOOH structures (α, γ, and δ phases) are systematically analyzed by density functional theory with different exchange and correlation energy functional approximations, namely two local, two generalized-gradient approximation (GGA), and two GGA for solids (GGAsol). Phase stability, compressibility and hydrogen bond evolution are studied in a range of pressures from 0 to 30 GPa. In general, the use of GGAsol functionals is mandatory in order to have the correct phase stability order, a good description of the hydrogen bonds, and a close agreement with the experimental lattice parameters at the various pressures. Pressure-induced hydrogen-bond symmetrization is found in γ and δ phases at high compression, while the hydrogen bonds in the α phase remain asymmetric. A detailed analysis of the uncertainties on the values of the bulk moduli and their pressure derivative at zero pressure deduced by fitting calculated or experimental (P,V) data is also presented.
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/28/18/185401