Loading…
Hybrid carbon fiber/carbon nanotube composites for structural damping applications
Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using...
Saved in:
Published in: | Nanotechnology 2013-04, Vol.24 (15), p.155704-155704 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon nanotubes (CNTs) were grown on the surface of carbon fibers utilizing a relatively low temperature synthesis technique; graphitic structures by design (GSD). To probe the effects of the synthesis protocols on the mechanical properties, other samples with surface grown CNTs were prepared using catalytic chemical vapor deposition (CCVD). The woven graphite fabrics were thermally shielded with a thin film of SiO2 and CNTs were grown on top of this film. Raman spectroscopy and electron microscopy revealed the grown species to be multi-walled carbon nanotubes (MWCNTs). The damping performance of the hybrid CNT-carbon fiber-reinforced epoxy composite was examined using dynamic mechanical analysis (DMA). Mechanical testing confirmed that the degradations in the strength and stiffness as a result of the GSD process are far less than those encountered through using the CCVD technique and yet are negligible compared to the reference samples. The DMA results indicated that, despite the minimal degradation in the storage modulus, the loss tangent (damping) for the hybrid composites utilizing GSD-grown MWCNTs improved by 56% compared to the reference samples (based on raw carbon fibers with no surface treatment or surface grown carbon nanotubes) over the frequency range 1-60 Hz. These results indicated that the energy dissipation in the GSD-grown MWCNTs composite can be primarily attributed to the frictional sliding at the nanotube/epoxy interface and to a lesser extent to the stiff thermal shielding SiO2 film on the fiber/matrix interface. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/24/15/155704 |