Loading…
Laser micromachining as a metallization tool for microfluidic polymer stacks
A novel assembly approach for the integration of metal structures into polymeric microfluidic systems is described. The presented production process is completely based on a single solid-state laser source, which is used to incorporate metal foils into a polymeric multi-layer stack by laser bonding...
Saved in:
Published in: | Journal of micromechanics and microengineering 2013-03, Vol.23 (3), p.35020-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel assembly approach for the integration of metal structures into polymeric microfluidic systems is described. The presented production process is completely based on a single solid-state laser source, which is used to incorporate metal foils into a polymeric multi-layer stack by laser bonding and ablation processes. Chemical reagents or glues are not required. The polymer stack contains a flexible membrane which can be used for realizing microfluidic valves and pumps. The metal-to-polymer bond was investigated for different metal foils and plasma treatments, yielding a maximum peel strength of Rps = 1.33 N mm−1. A minimum structure size of 10 µm was determined by 3D microscopy of the laser cut line. As an example application, two different metal foils were used in combination to micromachine a standardized type-T thermocouple on a polymer substrate. An additional laser process was developed which allows metal-to-metal welding in close vicinity to the polymer substrate. With this process step, the reliability of the electrical contact could be increased to survive at least 400 PCR temperature cycles at very low contact resistances. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/23/3/035020 |