Loading…
Microcontact patterning of conductive silver lines by contact inking and its layer-transfer mechanisms
We developed a contact inking technique for microcontact printing aiming at the fabrication of conductive silver-nanoparticle (Ag NP) lines with rectangular cross section and constant layer thickness, irrespective of pattern size and shape. In the proposed process, Ag NP ink was first coated on a bl...
Saved in:
Published in: | Journal of micromechanics and microengineering 2015-05, Vol.25 (5), p.55022-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed a contact inking technique for microcontact printing aiming at the fabrication of conductive silver-nanoparticle (Ag NP) lines with rectangular cross section and constant layer thickness, irrespective of pattern size and shape. In the proposed process, Ag NP ink was first coated on a blanket and then inking was carried out by a contact with a microcontact stamp. The ink transferred onto the top of the stamp was finally settled on a workpiece by pressing to complete the printing process. To achieve robust inking to the stamp, the peel strengths between the Ag NP layer and the blankets and between the Ag NP layer and the stamp were investigated using poly (dimethylsiloxane) (PDMS) materials with different surface energies. Interestingly, it was revealed that the transferability of Ag NP from the blanket toward the stamp was not solely determined by the surface energy difference but also by the extent of solvent uptake by the PDMS blanket during inking. The solvent-containing PDMS significantly lowered its adhesion strength against adjacent ink layers and, as a consequence, the ink transfer was successfully achieved even if the ink passed from a higher to a lower energy surface. Furthermore, by the solvent-vapour annealing of contact-inked semi-dried patterns, arbitrarily iterated transfers between PDMS surfaces became possible. With the contact-inking process developed here, we demonstrate a finely defined printed structure of Ag NP conductive lines with widths of up to 1 μm. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/25/5/055022 |