Loading…

Energy harvesting using a PZT ceramic multilayer stack

In this paper, the interdisciplinary energy harvesting issues on piezoelectric energy harvesting were investigated using a '33' mode (mechanical stress and/or electric field are in parallel to the polarization direction) lead zirconate titanate multilayer piezoelectric stack (PZT-Stack). K...

Full description

Saved in:
Bibliographic Details
Published in:Smart materials and structures 2013-06, Vol.22 (6), p.065015-1-15
Main Authors: Xu, Tian-Bing, Siochi, Emilie J, Kang, Jin Ho, Zuo, Lei, Zhou, Wanlu, Tang, Xiudong, Jiang, Xiaoning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the interdisciplinary energy harvesting issues on piezoelectric energy harvesting were investigated using a '33' mode (mechanical stress and/or electric field are in parallel to the polarization direction) lead zirconate titanate multilayer piezoelectric stack (PZT-Stack). Key energy harvesting characteristics including the generated electrical energy/power in the PZT-Stack, the mechanical to electrical energy conversion efficiency, the power delivered from the PZT-Stack to a resistive load, the electrical charge/energy transferred from the PZT-Stack to a super-capacitor were systematically addressed. Theoretical models for power generation and delivery to a resistive load were proposed and experimentally affirmed. In a quasi-static regime, 70% generated electrical powers were delivered to matched resistive loads. A 35% mechanical to electrical energy conversion efficiency, which is more than 4 times higher than other reports, for the PZT-Stack had been obtained. The generated electrical power and power density were significantly higher than those from a similar weight and size cantilever-type piezoelectric harvester in both resonance and off-resonance modes. In addition, our study indicated that the capacitance and piezoelectric coefficient of the PZT-Stack were strongly dependent on the dynamic stress.
ISSN:0964-1726
1361-665X
DOI:10.1088/0964-1726/22/6/065015