Loading…

Toward fidelity and scalability in non-vacuum mergers

We study the evolution of two fiducial configurations for binary neutron stars using two different general relativistic hydrodynamics (GRHD), distributed adaptive mesh codes. One code, Had, has for many years been used to study mergers of compact object binaries, while a new code, MHDuet, has been r...

Full description

Saved in:
Bibliographic Details
Published in:Classical and quantum gravity 2020-07, Vol.37 (13), p.135006
Main Authors: Liebling, Steven L, Palenzuela, Carlos, Lehner, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3
cites cdi_FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3
container_end_page
container_issue 13
container_start_page 135006
container_title Classical and quantum gravity
container_volume 37
creator Liebling, Steven L
Palenzuela, Carlos
Lehner, Luis
description We study the evolution of two fiducial configurations for binary neutron stars using two different general relativistic hydrodynamics (GRHD), distributed adaptive mesh codes. One code, Had, has for many years been used to study mergers of compact object binaries, while a new code, MHDuet, has been recently developed with the experience gained with the older one as well as several novel features for scalability improvements. As such, we examine the performance of each, placing particular focus on future requirements for the extraction of gravitational wave signatures of non-vacuum binaries.
doi_str_mv 10.1088/1361-6382/ab8fcd
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6382_ab8fcd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgab8fcd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3</originalsourceid><addsrcrecordid>eNp9j81Lw0AQxRdRsFbvHnP0YOzMziaZHqX4BQUv9bxs9qOktEndbZT-96ZWPIkwMMzw3rz5CXGNcIfAPEEqMS-J5cTUHKw7EaPf1akYgSxVPiXGc3GR0goAkVGORLHoPk10WWicXze7fWZalyVr1qZuvuemzdquzT-M7ftNtvFx6WO6FGfBrJO_-ulj8fb4sJg95_PXp5fZ_Ty3hLTLlawDwZBlCywtegVYyIp9rZh4GqCoq0pNvTIsMRBaUxHXkq1jqzyQo7GA410bu5SiD3obm42Je42gD9j6wKgPjPqIPVhuj5am2-pV18d2ePA_-c0fcvu-1FQN6qEKgFJvXaAvmoxmYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward fidelity and scalability in non-vacuum mergers</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Liebling, Steven L ; Palenzuela, Carlos ; Lehner, Luis</creator><creatorcontrib>Liebling, Steven L ; Palenzuela, Carlos ; Lehner, Luis</creatorcontrib><description>We study the evolution of two fiducial configurations for binary neutron stars using two different general relativistic hydrodynamics (GRHD), distributed adaptive mesh codes. One code, Had, has for many years been used to study mergers of compact object binaries, while a new code, MHDuet, has been recently developed with the experience gained with the older one as well as several novel features for scalability improvements. As such, we examine the performance of each, placing particular focus on future requirements for the extraction of gravitational wave signatures of non-vacuum binaries.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ab8fcd</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>binary neutron stars ; gravitational waves ; numerical relativity</subject><ispartof>Classical and quantum gravity, 2020-07, Vol.37 (13), p.135006</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3</citedby><cites>FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3</cites><orcidid>0000-0002-5008-6119 ; 0000-0001-9682-3383 ; 0000-0003-0634-531X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liebling, Steven L</creatorcontrib><creatorcontrib>Palenzuela, Carlos</creatorcontrib><creatorcontrib>Lehner, Luis</creatorcontrib><title>Toward fidelity and scalability in non-vacuum mergers</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We study the evolution of two fiducial configurations for binary neutron stars using two different general relativistic hydrodynamics (GRHD), distributed adaptive mesh codes. One code, Had, has for many years been used to study mergers of compact object binaries, while a new code, MHDuet, has been recently developed with the experience gained with the older one as well as several novel features for scalability improvements. As such, we examine the performance of each, placing particular focus on future requirements for the extraction of gravitational wave signatures of non-vacuum binaries.</description><subject>binary neutron stars</subject><subject>gravitational waves</subject><subject>numerical relativity</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j81Lw0AQxRdRsFbvHnP0YOzMziaZHqX4BQUv9bxs9qOktEndbZT-96ZWPIkwMMzw3rz5CXGNcIfAPEEqMS-J5cTUHKw7EaPf1akYgSxVPiXGc3GR0goAkVGORLHoPk10WWicXze7fWZalyVr1qZuvuemzdquzT-M7ftNtvFx6WO6FGfBrJO_-ulj8fb4sJg95_PXp5fZ_Ty3hLTLlawDwZBlCywtegVYyIp9rZh4GqCoq0pNvTIsMRBaUxHXkq1jqzyQo7GA410bu5SiD3obm42Je42gD9j6wKgPjPqIPVhuj5am2-pV18d2ePA_-c0fcvu-1FQN6qEKgFJvXaAvmoxmYw</recordid><startdate>20200709</startdate><enddate>20200709</enddate><creator>Liebling, Steven L</creator><creator>Palenzuela, Carlos</creator><creator>Lehner, Luis</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5008-6119</orcidid><orcidid>https://orcid.org/0000-0001-9682-3383</orcidid><orcidid>https://orcid.org/0000-0003-0634-531X</orcidid></search><sort><creationdate>20200709</creationdate><title>Toward fidelity and scalability in non-vacuum mergers</title><author>Liebling, Steven L ; Palenzuela, Carlos ; Lehner, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>binary neutron stars</topic><topic>gravitational waves</topic><topic>numerical relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liebling, Steven L</creatorcontrib><creatorcontrib>Palenzuela, Carlos</creatorcontrib><creatorcontrib>Lehner, Luis</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebling, Steven L</au><au>Palenzuela, Carlos</au><au>Lehner, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward fidelity and scalability in non-vacuum mergers</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2020-07-09</date><risdate>2020</risdate><volume>37</volume><issue>13</issue><spage>135006</spage><pages>135006-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We study the evolution of two fiducial configurations for binary neutron stars using two different general relativistic hydrodynamics (GRHD), distributed adaptive mesh codes. One code, Had, has for many years been used to study mergers of compact object binaries, while a new code, MHDuet, has been recently developed with the experience gained with the older one as well as several novel features for scalability improvements. As such, we examine the performance of each, placing particular focus on future requirements for the extraction of gravitational wave signatures of non-vacuum binaries.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ab8fcd</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5008-6119</orcidid><orcidid>https://orcid.org/0000-0001-9682-3383</orcidid><orcidid>https://orcid.org/0000-0003-0634-531X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2020-07, Vol.37 (13), p.135006
issn 0264-9381
1361-6382
language eng
recordid cdi_iop_journals_10_1088_1361_6382_ab8fcd
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects binary neutron stars
gravitational waves
numerical relativity
title Toward fidelity and scalability in non-vacuum mergers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20fidelity%20and%20scalability%20in%20non-vacuum%20mergers&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Liebling,%20Steven%20L&rft.date=2020-07-09&rft.volume=37&rft.issue=13&rft.spage=135006&rft.pages=135006-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ab8fcd&rft_dat=%3Ciop_cross%3Ecqgab8fcd%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-42bf30001c516c1e4015278eb48389f05b7749e4a821f31ca738b28cd8c4e03d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true