Loading…
A new version of the convexification method for a 1D coefficient inverse problem with experimental data
A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral...
Saved in:
Published in: | Inverse problems 2018-11, Vol.34 (11), p.115014 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3 |
container_end_page | |
container_issue | 11 |
container_start_page | 115014 |
container_title | Inverse problems |
container_volume | 34 |
creator | Klibanov, Michael V Kolesov, Aleksandr E Sullivan, Anders Nguyen, Lam |
description | A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data. |
doi_str_mv | 10.1088/1361-6420/aadbc6 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_aadbc6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipaadbc6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd495ubFtZlkN90eS_2Eghc9h2kysSntZsmuWv-9WSqeFAYG3hePx9gliBsQdT0BpaHQpRQTRLey-oiNfqFjNhJS66LSAKfsrOs2QgDUMB2xtzlv6JN_UOpCbHj0vF8Tt7H5oH3wwWI_wDvq19FxHxNHDreZJ5_JQE3PQzOYibcprra045-hX3Pat5TCLvO45Q57PGcnHrcdXfz8MXu9v3tZPBbL54enxXxZWAWyL8iKeoWaqmqmXCn01KmZFdJKnKKShORISV9LJMqGWSm8dwR1rT0IrKxVYyYOuTbFrkvkTZt7YPoyIMwwlBlWMcMq5jBUtlwdLCG2ZhPfU5MLmtAaVRqAfJWA0rTOZ-X1H8p_g78B14d5wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</title><source>Institute of Physics</source><creator>Klibanov, Michael V ; Kolesov, Aleksandr E ; Sullivan, Anders ; Nguyen, Lam</creator><creatorcontrib>Klibanov, Michael V ; Kolesov, Aleksandr E ; Sullivan, Anders ; Nguyen, Lam</creatorcontrib><description>A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/aadbc6</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Carleman weight function ; coefficient inverse problem ; convexification ; experimental data ; global convergence ; numerical method</subject><ispartof>Inverse problems, 2018-11, Vol.34 (11), p.115014</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</citedby><cites>FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</cites><orcidid>0000-0001-5179-6879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Klibanov, Michael V</creatorcontrib><creatorcontrib>Kolesov, Aleksandr E</creatorcontrib><creatorcontrib>Sullivan, Anders</creatorcontrib><creatorcontrib>Nguyen, Lam</creatorcontrib><title>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.</description><subject>Carleman weight function</subject><subject>coefficient inverse problem</subject><subject>convexification</subject><subject>experimental data</subject><subject>global convergence</subject><subject>numerical method</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd495ubFtZlkN90eS_2Eghc9h2kysSntZsmuWv-9WSqeFAYG3hePx9gliBsQdT0BpaHQpRQTRLey-oiNfqFjNhJS66LSAKfsrOs2QgDUMB2xtzlv6JN_UOpCbHj0vF8Tt7H5oH3wwWI_wDvq19FxHxNHDreZJ5_JQE3PQzOYibcprra045-hX3Pat5TCLvO45Q57PGcnHrcdXfz8MXu9v3tZPBbL54enxXxZWAWyL8iKeoWaqmqmXCn01KmZFdJKnKKShORISV9LJMqGWSm8dwR1rT0IrKxVYyYOuTbFrkvkTZt7YPoyIMwwlBlWMcMq5jBUtlwdLCG2ZhPfU5MLmtAaVRqAfJWA0rTOZ-X1H8p_g78B14d5wg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Klibanov, Michael V</creator><creator>Kolesov, Aleksandr E</creator><creator>Sullivan, Anders</creator><creator>Nguyen, Lam</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5179-6879</orcidid></search><sort><creationdate>20181101</creationdate><title>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</title><author>Klibanov, Michael V ; Kolesov, Aleksandr E ; Sullivan, Anders ; Nguyen, Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carleman weight function</topic><topic>coefficient inverse problem</topic><topic>convexification</topic><topic>experimental data</topic><topic>global convergence</topic><topic>numerical method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klibanov, Michael V</creatorcontrib><creatorcontrib>Kolesov, Aleksandr E</creatorcontrib><creatorcontrib>Sullivan, Anders</creatorcontrib><creatorcontrib>Nguyen, Lam</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klibanov, Michael V</au><au>Kolesov, Aleksandr E</au><au>Sullivan, Anders</au><au>Nguyen, Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>34</volume><issue>11</issue><spage>115014</spage><pages>115014-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/aadbc6</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5179-6879</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2018-11, Vol.34 (11), p.115014 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6420_aadbc6 |
source | Institute of Physics |
subjects | Carleman weight function coefficient inverse problem convexification experimental data global convergence numerical method |
title | A new version of the convexification method for a 1D coefficient inverse problem with experimental data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20version%20of%20the%20convexification%20method%20for%20a%201D%20coefficient%20inverse%20problem%20with%20experimental%20data&rft.jtitle=Inverse%20problems&rft.au=Klibanov,%20Michael%20V&rft.date=2018-11-01&rft.volume=34&rft.issue=11&rft.spage=115014&rft.pages=115014-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/aadbc6&rft_dat=%3Ciop_cross%3Eipaadbc6%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |