Loading…

A new version of the convexification method for a 1D coefficient inverse problem with experimental data

A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral...

Full description

Saved in:
Bibliographic Details
Published in:Inverse problems 2018-11, Vol.34 (11), p.115014
Main Authors: Klibanov, Michael V, Kolesov, Aleksandr E, Sullivan, Anders, Nguyen, Lam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3
cites cdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3
container_end_page
container_issue 11
container_start_page 115014
container_title Inverse problems
container_volume 34
creator Klibanov, Michael V
Kolesov, Aleksandr E
Sullivan, Anders
Nguyen, Lam
description A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.
doi_str_mv 10.1088/1361-6420/aadbc6
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_aadbc6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipaadbc6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd495ubFtZlkN90eS_2Eghc9h2kysSntZsmuWv-9WSqeFAYG3hePx9gliBsQdT0BpaHQpRQTRLey-oiNfqFjNhJS66LSAKfsrOs2QgDUMB2xtzlv6JN_UOpCbHj0vF8Tt7H5oH3wwWI_wDvq19FxHxNHDreZJ5_JQE3PQzOYibcprra045-hX3Pat5TCLvO45Q57PGcnHrcdXfz8MXu9v3tZPBbL54enxXxZWAWyL8iKeoWaqmqmXCn01KmZFdJKnKKShORISV9LJMqGWSm8dwR1rT0IrKxVYyYOuTbFrkvkTZt7YPoyIMwwlBlWMcMq5jBUtlwdLCG2ZhPfU5MLmtAaVRqAfJWA0rTOZ-X1H8p_g78B14d5wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</title><source>Institute of Physics</source><creator>Klibanov, Michael V ; Kolesov, Aleksandr E ; Sullivan, Anders ; Nguyen, Lam</creator><creatorcontrib>Klibanov, Michael V ; Kolesov, Aleksandr E ; Sullivan, Anders ; Nguyen, Lam</creatorcontrib><description>A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/aadbc6</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Carleman weight function ; coefficient inverse problem ; convexification ; experimental data ; global convergence ; numerical method</subject><ispartof>Inverse problems, 2018-11, Vol.34 (11), p.115014</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</citedby><cites>FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</cites><orcidid>0000-0001-5179-6879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Klibanov, Michael V</creatorcontrib><creatorcontrib>Kolesov, Aleksandr E</creatorcontrib><creatorcontrib>Sullivan, Anders</creatorcontrib><creatorcontrib>Nguyen, Lam</creatorcontrib><title>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.</description><subject>Carleman weight function</subject><subject>coefficient inverse problem</subject><subject>convexification</subject><subject>experimental data</subject><subject>global convergence</subject><subject>numerical method</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd495ubFtZlkN90eS_2Eghc9h2kysSntZsmuWv-9WSqeFAYG3hePx9gliBsQdT0BpaHQpRQTRLey-oiNfqFjNhJS66LSAKfsrOs2QgDUMB2xtzlv6JN_UOpCbHj0vF8Tt7H5oH3wwWI_wDvq19FxHxNHDreZJ5_JQE3PQzOYibcprra045-hX3Pat5TCLvO45Q57PGcnHrcdXfz8MXu9v3tZPBbL54enxXxZWAWyL8iKeoWaqmqmXCn01KmZFdJKnKKShORISV9LJMqGWSm8dwR1rT0IrKxVYyYOuTbFrkvkTZt7YPoyIMwwlBlWMcMq5jBUtlwdLCG2ZhPfU5MLmtAaVRqAfJWA0rTOZ-X1H8p_g78B14d5wg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Klibanov, Michael V</creator><creator>Kolesov, Aleksandr E</creator><creator>Sullivan, Anders</creator><creator>Nguyen, Lam</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5179-6879</orcidid></search><sort><creationdate>20181101</creationdate><title>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</title><author>Klibanov, Michael V ; Kolesov, Aleksandr E ; Sullivan, Anders ; Nguyen, Lam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carleman weight function</topic><topic>coefficient inverse problem</topic><topic>convexification</topic><topic>experimental data</topic><topic>global convergence</topic><topic>numerical method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klibanov, Michael V</creatorcontrib><creatorcontrib>Kolesov, Aleksandr E</creatorcontrib><creatorcontrib>Sullivan, Anders</creatorcontrib><creatorcontrib>Nguyen, Lam</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klibanov, Michael V</au><au>Kolesov, Aleksandr E</au><au>Sullivan, Anders</au><au>Nguyen, Lam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new version of the convexification method for a 1D coefficient inverse problem with experimental data</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>34</volume><issue>11</issue><spage>115014</spage><pages>115014-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>A new version of the convexification method is developed analytically and tested numerically for a 1D coefficient inverse problem in the frequency domain. Unlike the previous version, this one does not use the so-called 'tail function', which is a complement of a certain truncated integral with respect to the wave number. Globally strictly convex cost functional is constructed with the Carleman weight function. Global convergence of the gradient projection method to the correct solution is proved. Numerical tests are conducted for both computationally simulated and experimental data.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/aadbc6</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5179-6879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2018-11, Vol.34 (11), p.115014
issn 0266-5611
1361-6420
language eng
recordid cdi_iop_journals_10_1088_1361_6420_aadbc6
source Institute of Physics
subjects Carleman weight function
coefficient inverse problem
convexification
experimental data
global convergence
numerical method
title A new version of the convexification method for a 1D coefficient inverse problem with experimental data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20version%20of%20the%20convexification%20method%20for%20a%201D%20coefficient%20inverse%20problem%20with%20experimental%20data&rft.jtitle=Inverse%20problems&rft.au=Klibanov,%20Michael%20V&rft.date=2018-11-01&rft.volume=34&rft.issue=11&rft.spage=115014&rft.pages=115014-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/aadbc6&rft_dat=%3Ciop_cross%3Eipaadbc6%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-ec08ba6e5593d4067d39c02c2a7a32eaede32f82aeec31940ffde1886f10a5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true