Loading…

Dynamic Fourier ptychography with deep spatiotemporal priors

Fourier ptychography (FP) involves the acquisition of several low-resolution intensity images of a sample under varying illumination angles. They are then combined into a high-resolution complex-valued image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a sequence of...

Full description

Saved in:
Bibliographic Details
Published in:Inverse problems 2023-06, Vol.39 (6), p.64005
Main Authors: Bohra, Pakshal, Pham, Thanh-an, Long, Yuxuan, Yoo, Jaejun, Unser, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3
cites cdi_FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3
container_end_page
container_issue 6
container_start_page 64005
container_title Inverse problems
container_volume 39
creator Bohra, Pakshal
Pham, Thanh-an
Long, Yuxuan
Yoo, Jaejun
Unser, Michael
description Fourier ptychography (FP) involves the acquisition of several low-resolution intensity images of a sample under varying illumination angles. They are then combined into a high-resolution complex-valued image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a sequence of high-resolution images of a moving sample. There, the application of standard frame-by-frame reconstruction methods limits the temporal resolution due to the large number of measurements that must be acquired for each frame. In this work instead, we propose a neural-network-based reconstruction framework for dynamic FP. Specifically, each reconstructed image in the sequence is the output of a shared deep convolutional network fed with an input vector that lies on a one-dimensional manifold that encodes time. We then optimize the parameters of the network to fit the acquired measurements. The architecture of the network and the constraints on the input vectors impose a spatiotemporal regularization on the sequence of images. This enables our method to achieve high temporal resolution without compromising the spatial resolution. The proposed framework does not require training data. It also recovers the pupil function of the microscope. Through numerical experiments, we show that our framework paves the way for high-quality ultrafast FP.
doi_str_mv 10.1088/1361-6420/acca72
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6420_acca72</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipacca72</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3</originalsourceid><addsrcrecordid>eNp1z8FKxDAQBuAgCtbVu8c-gHVn0iZtwYusrgoLXvQc0jSxWbabkFSkb29LZW-eBob5Z-Yj5BbhHqGq1phzzHhBYS2VkiU9I8mpdU4SoJxnjCNekqsY9wCIFZYJeXgaj7K3Kt2672B1SP0wqs59Bem7Mf2xQ5e2Wvs0ejlYN-jeuyAPqQ_WhXhNLow8RH3zV1fkc_v8sXnNdu8vb5vHXaZySofMGFXmtdZcMdmAyaEuZVsrSlneVoxqxBpKrApAKrFgBoAZ2kBVckBFZZOvCCx7VXAxBm3EdL-XYRQIYtaLmSpmqlj0U-RuiVjnxX6yHacH_x__Bf0HW7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Fourier ptychography with deep spatiotemporal priors</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Bohra, Pakshal ; Pham, Thanh-an ; Long, Yuxuan ; Yoo, Jaejun ; Unser, Michael</creator><creatorcontrib>Bohra, Pakshal ; Pham, Thanh-an ; Long, Yuxuan ; Yoo, Jaejun ; Unser, Michael</creatorcontrib><description>Fourier ptychography (FP) involves the acquisition of several low-resolution intensity images of a sample under varying illumination angles. They are then combined into a high-resolution complex-valued image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a sequence of high-resolution images of a moving sample. There, the application of standard frame-by-frame reconstruction methods limits the temporal resolution due to the large number of measurements that must be acquired for each frame. In this work instead, we propose a neural-network-based reconstruction framework for dynamic FP. Specifically, each reconstructed image in the sequence is the output of a shared deep convolutional network fed with an input vector that lies on a one-dimensional manifold that encodes time. We then optimize the parameters of the network to fit the acquired measurements. The architecture of the network and the constraints on the input vectors impose a spatiotemporal regularization on the sequence of images. This enables our method to achieve high temporal resolution without compromising the spatial resolution. The proposed framework does not require training data. It also recovers the pupil function of the microscope. Through numerical experiments, we show that our framework paves the way for high-quality ultrafast FP.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/acca72</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>dynamic imaging ; Fourier ptychography ; neural networks ; regularization</subject><ispartof>Inverse problems, 2023-06, Vol.39 (6), p.64005</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3</citedby><cites>FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3</cites><orcidid>0000-0002-2611-3834 ; 0000-0001-6231-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bohra, Pakshal</creatorcontrib><creatorcontrib>Pham, Thanh-an</creatorcontrib><creatorcontrib>Long, Yuxuan</creatorcontrib><creatorcontrib>Yoo, Jaejun</creatorcontrib><creatorcontrib>Unser, Michael</creatorcontrib><title>Dynamic Fourier ptychography with deep spatiotemporal priors</title><title>Inverse problems</title><addtitle>ip</addtitle><addtitle>Inverse Problems</addtitle><description>Fourier ptychography (FP) involves the acquisition of several low-resolution intensity images of a sample under varying illumination angles. They are then combined into a high-resolution complex-valued image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a sequence of high-resolution images of a moving sample. There, the application of standard frame-by-frame reconstruction methods limits the temporal resolution due to the large number of measurements that must be acquired for each frame. In this work instead, we propose a neural-network-based reconstruction framework for dynamic FP. Specifically, each reconstructed image in the sequence is the output of a shared deep convolutional network fed with an input vector that lies on a one-dimensional manifold that encodes time. We then optimize the parameters of the network to fit the acquired measurements. The architecture of the network and the constraints on the input vectors impose a spatiotemporal regularization on the sequence of images. This enables our method to achieve high temporal resolution without compromising the spatial resolution. The proposed framework does not require training data. It also recovers the pupil function of the microscope. Through numerical experiments, we show that our framework paves the way for high-quality ultrafast FP.</description><subject>dynamic imaging</subject><subject>Fourier ptychography</subject><subject>neural networks</subject><subject>regularization</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1z8FKxDAQBuAgCtbVu8c-gHVn0iZtwYusrgoLXvQc0jSxWbabkFSkb29LZW-eBob5Z-Yj5BbhHqGq1phzzHhBYS2VkiU9I8mpdU4SoJxnjCNekqsY9wCIFZYJeXgaj7K3Kt2672B1SP0wqs59Bem7Mf2xQ5e2Wvs0ejlYN-jeuyAPqQ_WhXhNLow8RH3zV1fkc_v8sXnNdu8vb5vHXaZySofMGFXmtdZcMdmAyaEuZVsrSlneVoxqxBpKrApAKrFgBoAZ2kBVckBFZZOvCCx7VXAxBm3EdL-XYRQIYtaLmSpmqlj0U-RuiVjnxX6yHacH_x__Bf0HW7k</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Bohra, Pakshal</creator><creator>Pham, Thanh-an</creator><creator>Long, Yuxuan</creator><creator>Yoo, Jaejun</creator><creator>Unser, Michael</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2611-3834</orcidid><orcidid>https://orcid.org/0000-0001-6231-2569</orcidid></search><sort><creationdate>20230601</creationdate><title>Dynamic Fourier ptychography with deep spatiotemporal priors</title><author>Bohra, Pakshal ; Pham, Thanh-an ; Long, Yuxuan ; Yoo, Jaejun ; Unser, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>dynamic imaging</topic><topic>Fourier ptychography</topic><topic>neural networks</topic><topic>regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohra, Pakshal</creatorcontrib><creatorcontrib>Pham, Thanh-an</creatorcontrib><creatorcontrib>Long, Yuxuan</creatorcontrib><creatorcontrib>Yoo, Jaejun</creatorcontrib><creatorcontrib>Unser, Michael</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohra, Pakshal</au><au>Pham, Thanh-an</au><au>Long, Yuxuan</au><au>Yoo, Jaejun</au><au>Unser, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Fourier ptychography with deep spatiotemporal priors</atitle><jtitle>Inverse problems</jtitle><stitle>ip</stitle><addtitle>Inverse Problems</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>64005</spage><pages>64005-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>Fourier ptychography (FP) involves the acquisition of several low-resolution intensity images of a sample under varying illumination angles. They are then combined into a high-resolution complex-valued image by solving a phase-retrieval problem. The objective in dynamic FP is to obtain a sequence of high-resolution images of a moving sample. There, the application of standard frame-by-frame reconstruction methods limits the temporal resolution due to the large number of measurements that must be acquired for each frame. In this work instead, we propose a neural-network-based reconstruction framework for dynamic FP. Specifically, each reconstructed image in the sequence is the output of a shared deep convolutional network fed with an input vector that lies on a one-dimensional manifold that encodes time. We then optimize the parameters of the network to fit the acquired measurements. The architecture of the network and the constraints on the input vectors impose a spatiotemporal regularization on the sequence of images. This enables our method to achieve high temporal resolution without compromising the spatial resolution. The proposed framework does not require training data. It also recovers the pupil function of the microscope. Through numerical experiments, we show that our framework paves the way for high-quality ultrafast FP.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/acca72</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2611-3834</orcidid><orcidid>https://orcid.org/0000-0001-6231-2569</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2023-06, Vol.39 (6), p.64005
issn 0266-5611
1361-6420
language eng
recordid cdi_iop_journals_10_1088_1361_6420_acca72
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects dynamic imaging
Fourier ptychography
neural networks
regularization
title Dynamic Fourier ptychography with deep spatiotemporal priors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Fourier%20ptychography%20with%20deep%20spatiotemporal%20priors&rft.jtitle=Inverse%20problems&rft.au=Bohra,%20Pakshal&rft.date=2023-06-01&rft.volume=39&rft.issue=6&rft.spage=64005&rft.pages=64005-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/acca72&rft_dat=%3Ciop_cross%3Eipacca72%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-ffc739ee6c5ab0f3097ad9c2253d852e11907184012a145f005f2b087601c2ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true