Loading…

A fast electrochemical actuator in the non-explosive regime

Microfluidic systems require a compact, energy-efficient and microtechnology-compatible actuator that pushes the liquid through the channels. Electrochemical devices are promising candidates, but they suffer from a long response time due to slow gas recombination. An actuator with a millisecond resp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromechanics and microengineering 2019-11, Vol.29 (11), p.114001
Main Authors: Uvarov, Ilia V, Melenev, Artem E, Lokhanin, Mikhail V, Naumov, Victor V, Svetovoy, Vitaly B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3
cites cdi_FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3
container_end_page
container_issue 11
container_start_page 114001
container_title Journal of micromechanics and microengineering
container_volume 29
creator Uvarov, Ilia V
Melenev, Artem E
Lokhanin, Mikhail V
Naumov, Victor V
Svetovoy, Vitaly B
description Microfluidic systems require a compact, energy-efficient and microtechnology-compatible actuator that pushes the liquid through the channels. Electrochemical devices are promising candidates, but they suffer from a long response time due to slow gas recombination. An actuator with a millisecond response time was demonstrated recently. A micron-sized chamber of the device with two titanium electrodes is sealed by a polydimethylsiloxane membrane. A series of microsecond voltage pulses of alternating polarity is applied to the electrodes. Nanobubbles generated in the chamber push the membrane up, but disappear quickly due to spontaneous combustion of hydrogen and oxygen. In this work, operation of the device is investigated in detail. The pulses with a frequency from 100 to 500 kHz are used for actuation. It is demonstrated that higher frequency and higher amplitude of the pulses provide larger deflection of the membrane, but finally the deflection is saturated. The stroke of 8-9 µm can be achieved. In a cyclic operation regime the actuator is driven by series of pulses. If the time interval between the series is too short, the gas accumulates in the chamber. The membrane lifts during several cycles and then oscillates in the lifted position. In this regime the operating frequency as high as several hundred hertz can be achieved. The higher the frequency, the higher is the lift. The stroke also increases with the frequency, making a higher value more beneficial. Destruction of the electrodes is not observed, but the oxidation of titanium with time suppresses the gas production and decreases the membrane deflection. At a high frequency of the pulses the oxidation goes slower, but still significantly affects the performance. The oxidation of the electrodes is recognized as the main problem of the device. Methods to solve the problem are proposed.
doi_str_mv 10.1088/1361-6439/ab3bde
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6439_ab3bde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmmab3bde</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQRoMouK7ePebowbqZJu0meFoWV4UFL3oOSTpxu7RNSbqi_96WFU8KAwPDfI95Q8g1sDtgUi6Al5CVgquFsdxWeEJmv6NTMmOqZBlwWJ6Ti5T2jAFIkDNyv6LepIFig26Iwe2wrZ1pqHHDwQwh0rqjww5pF7oMP_smpPoDacT3usVLcuZNk_Dqp8_J2-bhdf2UbV8en9erbeZ4UQzZUuXGS2A2R5aDqpB7bxlwg6JU0hYSi3IJSlkHQpRSiip3ogIo0Hp0wvM5YUeuiyGliF73sW5N_NLA9CSvJ1M9meqj_Bi5OUbq0Ot9OMRuPFDv21bnSgOMJcYX6L6a6Ld_rP5L_gYdIWlX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fast electrochemical actuator in the non-explosive regime</title><source>Institute of Physics</source><creator>Uvarov, Ilia V ; Melenev, Artem E ; Lokhanin, Mikhail V ; Naumov, Victor V ; Svetovoy, Vitaly B</creator><creatorcontrib>Uvarov, Ilia V ; Melenev, Artem E ; Lokhanin, Mikhail V ; Naumov, Victor V ; Svetovoy, Vitaly B</creatorcontrib><description>Microfluidic systems require a compact, energy-efficient and microtechnology-compatible actuator that pushes the liquid through the channels. Electrochemical devices are promising candidates, but they suffer from a long response time due to slow gas recombination. An actuator with a millisecond response time was demonstrated recently. A micron-sized chamber of the device with two titanium electrodes is sealed by a polydimethylsiloxane membrane. A series of microsecond voltage pulses of alternating polarity is applied to the electrodes. Nanobubbles generated in the chamber push the membrane up, but disappear quickly due to spontaneous combustion of hydrogen and oxygen. In this work, operation of the device is investigated in detail. The pulses with a frequency from 100 to 500 kHz are used for actuation. It is demonstrated that higher frequency and higher amplitude of the pulses provide larger deflection of the membrane, but finally the deflection is saturated. The stroke of 8-9 µm can be achieved. In a cyclic operation regime the actuator is driven by series of pulses. If the time interval between the series is too short, the gas accumulates in the chamber. The membrane lifts during several cycles and then oscillates in the lifted position. In this regime the operating frequency as high as several hundred hertz can be achieved. The higher the frequency, the higher is the lift. The stroke also increases with the frequency, making a higher value more beneficial. Destruction of the electrodes is not observed, but the oxidation of titanium with time suppresses the gas production and decreases the membrane deflection. At a high frequency of the pulses the oxidation goes slower, but still significantly affects the performance. The oxidation of the electrodes is recognized as the main problem of the device. Methods to solve the problem are proposed.</description><identifier>ISSN: 0960-1317</identifier><identifier>EISSN: 1361-6439</identifier><identifier>DOI: 10.1088/1361-6439/ab3bde</identifier><identifier>CODEN: JMMIEZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>electrochemical actuators ; microfluidics ; nanobubbles ; water electrolysis</subject><ispartof>Journal of micromechanics and microengineering, 2019-11, Vol.29 (11), p.114001</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3</citedby><cites>FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3</cites><orcidid>0000-0002-9649-5663 ; 0000-0002-6882-0625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Uvarov, Ilia V</creatorcontrib><creatorcontrib>Melenev, Artem E</creatorcontrib><creatorcontrib>Lokhanin, Mikhail V</creatorcontrib><creatorcontrib>Naumov, Victor V</creatorcontrib><creatorcontrib>Svetovoy, Vitaly B</creatorcontrib><title>A fast electrochemical actuator in the non-explosive regime</title><title>Journal of micromechanics and microengineering</title><addtitle>JMM</addtitle><addtitle>J. Micromech. Microeng</addtitle><description>Microfluidic systems require a compact, energy-efficient and microtechnology-compatible actuator that pushes the liquid through the channels. Electrochemical devices are promising candidates, but they suffer from a long response time due to slow gas recombination. An actuator with a millisecond response time was demonstrated recently. A micron-sized chamber of the device with two titanium electrodes is sealed by a polydimethylsiloxane membrane. A series of microsecond voltage pulses of alternating polarity is applied to the electrodes. Nanobubbles generated in the chamber push the membrane up, but disappear quickly due to spontaneous combustion of hydrogen and oxygen. In this work, operation of the device is investigated in detail. The pulses with a frequency from 100 to 500 kHz are used for actuation. It is demonstrated that higher frequency and higher amplitude of the pulses provide larger deflection of the membrane, but finally the deflection is saturated. The stroke of 8-9 µm can be achieved. In a cyclic operation regime the actuator is driven by series of pulses. If the time interval between the series is too short, the gas accumulates in the chamber. The membrane lifts during several cycles and then oscillates in the lifted position. In this regime the operating frequency as high as several hundred hertz can be achieved. The higher the frequency, the higher is the lift. The stroke also increases with the frequency, making a higher value more beneficial. Destruction of the electrodes is not observed, but the oxidation of titanium with time suppresses the gas production and decreases the membrane deflection. At a high frequency of the pulses the oxidation goes slower, but still significantly affects the performance. The oxidation of the electrodes is recognized as the main problem of the device. Methods to solve the problem are proposed.</description><subject>electrochemical actuators</subject><subject>microfluidics</subject><subject>nanobubbles</subject><subject>water electrolysis</subject><issn>0960-1317</issn><issn>1361-6439</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQRoMouK7ePebowbqZJu0meFoWV4UFL3oOSTpxu7RNSbqi_96WFU8KAwPDfI95Q8g1sDtgUi6Al5CVgquFsdxWeEJmv6NTMmOqZBlwWJ6Ti5T2jAFIkDNyv6LepIFig26Iwe2wrZ1pqHHDwQwh0rqjww5pF7oMP_smpPoDacT3usVLcuZNk_Dqp8_J2-bhdf2UbV8en9erbeZ4UQzZUuXGS2A2R5aDqpB7bxlwg6JU0hYSi3IJSlkHQpRSiip3ogIo0Hp0wvM5YUeuiyGliF73sW5N_NLA9CSvJ1M9meqj_Bi5OUbq0Ot9OMRuPFDv21bnSgOMJcYX6L6a6Ld_rP5L_gYdIWlX</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Uvarov, Ilia V</creator><creator>Melenev, Artem E</creator><creator>Lokhanin, Mikhail V</creator><creator>Naumov, Victor V</creator><creator>Svetovoy, Vitaly B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9649-5663</orcidid><orcidid>https://orcid.org/0000-0002-6882-0625</orcidid></search><sort><creationdate>20191101</creationdate><title>A fast electrochemical actuator in the non-explosive regime</title><author>Uvarov, Ilia V ; Melenev, Artem E ; Lokhanin, Mikhail V ; Naumov, Victor V ; Svetovoy, Vitaly B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>electrochemical actuators</topic><topic>microfluidics</topic><topic>nanobubbles</topic><topic>water electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uvarov, Ilia V</creatorcontrib><creatorcontrib>Melenev, Artem E</creatorcontrib><creatorcontrib>Lokhanin, Mikhail V</creatorcontrib><creatorcontrib>Naumov, Victor V</creatorcontrib><creatorcontrib>Svetovoy, Vitaly B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of micromechanics and microengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uvarov, Ilia V</au><au>Melenev, Artem E</au><au>Lokhanin, Mikhail V</au><au>Naumov, Victor V</au><au>Svetovoy, Vitaly B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast electrochemical actuator in the non-explosive regime</atitle><jtitle>Journal of micromechanics and microengineering</jtitle><stitle>JMM</stitle><addtitle>J. Micromech. Microeng</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>29</volume><issue>11</issue><spage>114001</spage><pages>114001-</pages><issn>0960-1317</issn><eissn>1361-6439</eissn><coden>JMMIEZ</coden><abstract>Microfluidic systems require a compact, energy-efficient and microtechnology-compatible actuator that pushes the liquid through the channels. Electrochemical devices are promising candidates, but they suffer from a long response time due to slow gas recombination. An actuator with a millisecond response time was demonstrated recently. A micron-sized chamber of the device with two titanium electrodes is sealed by a polydimethylsiloxane membrane. A series of microsecond voltage pulses of alternating polarity is applied to the electrodes. Nanobubbles generated in the chamber push the membrane up, but disappear quickly due to spontaneous combustion of hydrogen and oxygen. In this work, operation of the device is investigated in detail. The pulses with a frequency from 100 to 500 kHz are used for actuation. It is demonstrated that higher frequency and higher amplitude of the pulses provide larger deflection of the membrane, but finally the deflection is saturated. The stroke of 8-9 µm can be achieved. In a cyclic operation regime the actuator is driven by series of pulses. If the time interval between the series is too short, the gas accumulates in the chamber. The membrane lifts during several cycles and then oscillates in the lifted position. In this regime the operating frequency as high as several hundred hertz can be achieved. The higher the frequency, the higher is the lift. The stroke also increases with the frequency, making a higher value more beneficial. Destruction of the electrodes is not observed, but the oxidation of titanium with time suppresses the gas production and decreases the membrane deflection. At a high frequency of the pulses the oxidation goes slower, but still significantly affects the performance. The oxidation of the electrodes is recognized as the main problem of the device. Methods to solve the problem are proposed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6439/ab3bde</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9649-5663</orcidid><orcidid>https://orcid.org/0000-0002-6882-0625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1317
ispartof Journal of micromechanics and microengineering, 2019-11, Vol.29 (11), p.114001
issn 0960-1317
1361-6439
language eng
recordid cdi_iop_journals_10_1088_1361_6439_ab3bde
source Institute of Physics
subjects electrochemical actuators
microfluidics
nanobubbles
water electrolysis
title A fast electrochemical actuator in the non-explosive regime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20electrochemical%20actuator%20in%20the%20non-explosive%20regime&rft.jtitle=Journal%20of%20micromechanics%20and%20microengineering&rft.au=Uvarov,%20Ilia%20V&rft.date=2019-11-01&rft.volume=29&rft.issue=11&rft.spage=114001&rft.pages=114001-&rft.issn=0960-1317&rft.eissn=1361-6439&rft.coden=JMMIEZ&rft_id=info:doi/10.1088/1361-6439/ab3bde&rft_dat=%3Ciop_cross%3Ejmmab3bde%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-792af810b2e0219de3ffb013ae4698b58e567199bc1446884d2c4d115ebfec4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true