Loading…
Transillumination lab-on-a-chip cytometer with silicon/glass membrane for image-based porcine oocyte deformation characterisation
Transillumination microscopes, often with a simple lens-free optical configuration, combined with lab-on-a-chip devices are useful tools for the characterisation of various biological samples. A key issue with these devices is light transparency across a lab-on-a-chip structure. In this work we achi...
Saved in:
Published in: | Journal of micromechanics and microengineering 2024-01, Vol.34 (1), p.17001 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transillumination microscopes, often with a simple lens-free optical configuration, combined with lab-on-a-chip devices are useful tools for the characterisation of various biological samples. A key issue with these devices is light transparency across a lab-on-a-chip structure. In this work we achieved this by embedding a glass window in a silicon membrane. Despite light transmission, the membrane could be pressure actuated. A second key issue is software analysis of the images due to the holographic nature of the captured images. In this paper, the technology of the silicon/glass membrane and results of porcine oocyte imaging during deformation are presented and compared with our previous micro-electro-mechanical system cytometer working with a reflective microscope. Thus, a unique device that deforms cells and allows deformation measurements with transillumination was developed. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/1361-6439/ad0d81 |