Loading…
Geiger mode theoretical study of a wafer-bonded Ge on Si single-photon avalanche photodiode
The investigation of the single-photon properties of a wafer-bonded Ge/Si single-photon avalanche photodiode (SPAD) is theoretically conducted. We focus on the effect of the natural GeO2 layer (hydrophilic reaction) at the Ge/Si wafer-bonded interface on dark count characteristics and single-photon...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2017-02, Vol.50 (5), p.55106 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The investigation of the single-photon properties of a wafer-bonded Ge/Si single-photon avalanche photodiode (SPAD) is theoretically conducted. We focus on the effect of the natural GeO2 layer (hydrophilic reaction) at the Ge/Si wafer-bonded interface on dark count characteristics and single-photon response. It is found that the wafer-bonded Ge/Si SPAD exhibits very low dark current at 250 K due to the absence of threading dislocation (TD) in the Ge layer. Owing to the increase of the unit-gain bias applied on the SPAD, the primary dark current (IDM) increases with the increase in GeO2 thickness. Furthermore, the dependence of the linear-mode gain and 3 dB bandwidth (BW) for the dark count on GeO2 thickness is also presented. It is observed that the dark count probability of the Ge/Si SPAD significantly increases with the increase in GeO2 thickness due to the increase of the IDM and the reduction of the 3 dB BW. It is also found that with the increase in GeO2 thickness, the external quantum efficiency, which affects the single-photon detection efficiency (SPDE), drastically decreases because of the blocking effect of the GeO2 layer and the serious recombination at the wafer-bonded Ge/Si interface. The afterpulsing probability (AP) shows an abnormal behavior with GeO2 thickness. This results from the decrease in avalanche charge and increase in effective transit time. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aa52b9 |