Loading…

Plasmonic superradiance of two emitters near a metal nanorod

Quantum emitters, such as quantum dots or dye molecules, pumped and situated close to plasmonic nanostructures resonantly excite surface plasmon-polaritons (SPPs). Excitation efficiency increases with the number of emitters because the SPP field synchronizes dipole oscillations of emitters, in analo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2017-06, Vol.50 (25), p.254003
Main Authors: Protsenko, I E, Uskov, A V, Chen, Xue-Wen, Xu, Hongxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantum emitters, such as quantum dots or dye molecules, pumped and situated close to plasmonic nanostructures resonantly excite surface plasmon-polaritons (SPPs). Excitation efficiency increases with the number of emitters because the SPP field synchronizes dipole oscillations of emitters, in analogy with superradiance (SR) in free space. Using a fully quantum mechanical model for two emitters coupled to a single metal nanorod, we predict that plasmonic SR increases the SPP generation yield of a single emitter by up to 15%. Such 'plasmonic SR' enhancement of SPP generation is stationary and takes place even at strong dissipation, dephasing and under incoherent pumping. Solid-state quantum emitters with blinking behaviors may be used to demonstrate plasmonic SR. Plasmonic SR may be useful for excitation of non-radiative SPP modes in plasmonic waveguides and lowering the threshold of plasmonic nanolasers.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/aa6fd4