Loading…
Bismides: 2D structures and quantum dots
The growth and characterization of ternary GaAsBi and quaternary GaInAsBi compound quantum wells (QWs) on GaAs substrates is presented in this study. The influence of technological parameters, such as different growth modes, substrate temperatures, beam equivalent pressure ratios and thermal treatin...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2017-09, Vol.50 (36), p.364002 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The growth and characterization of ternary GaAsBi and quaternary GaInAsBi compound quantum wells (QWs) on GaAs substrates is presented in this study. The influence of technological parameters, such as different growth modes, substrate temperatures, beam equivalent pressure ratios and thermal treating on structural and luminescent properties of QWs is discussed. The complex structural investigations using x-ray diffraction, atomic force microscopy and high-resolution transmission electron microscopy revealed high crystal structure, smooth surfaces and abrupt interfaces of both GaAsBi and GaInAsBi QWs. The temperature dependent photoluminescence measurements demonstrated emission wavelengths up to 1.43 µm in room temperature PL spectra measured for GaAsBi/GaAs QWs containing 12% Bi, whereas GaInAsBi QWs with 4.2% of bismuth inserted between GaAs barriers has reached 1.25 µm. Moreover, the annealing at high temperatures of GaAsBi/AlAs QWs stimulated agglomeration of bismuth to quantum dots in the well layers, emitting at 1.5 µm. The achieved wavelengths are the longest ones declared for the GaAsBi and GaInAsBi QW structures grown on the GaAs substrate, therefore bismide-based QWs are the promising structures for applications in infrared devices. |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/1361-6463/aa7bdb |