Loading…
Micromagnetics of rare-earth efficient permanent magnets
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the int...
Saved in:
Published in: | Journal of physics. D, Applied physics Applied physics, 2018-04, Vol.51 (19), p.193002 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3 |
container_end_page | |
container_issue | 19 |
container_start_page | 193002 |
container_title | Journal of physics. D, Applied physics |
container_volume | 51 |
creator | Fischbacher, Johann Kovacs, Alexander Gusenbauer, Markus Oezelt, Harald Exl, Lukas Bance, Simon Schrefl, Thomas |
description | The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized. |
doi_str_mv | 10.1088/1361-6463/aab7d1 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aab7d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daab7d1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</originalsourceid><addsrcrecordid>eNp1jztPxDAQhC0EEuGgp8wPwNzajpNNiU7AIR2igdra-AE5kYfsUPDvSRRER7WrnZnVfIxdC7gVgLgVqhS8LEq1JWoqJ05Y9nc6ZRmAlFxVsjpnFykdAUCXKDKGz62NQ0fvvZ9am_Ih5JGi557i9JH7EFrb-n7KRx876pdt9aZLdhboM_mr37lhbw_3r7s9P7w8Pu3uDtwqxIk3VW1Be1srCFI4bVHLoNCJpkKPJKQodQ0km-Aa52YVrdZEWAcJRaGC2jBY_841U4o-mDG2HcVvI8As5GbBNAumWcnnyM0aaYfRHIev2M8F_7f_AEtHWsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromagnetics of rare-earth efficient permanent magnets</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Fischbacher, Johann ; Kovacs, Alexander ; Gusenbauer, Markus ; Oezelt, Harald ; Exl, Lukas ; Bance, Simon ; Schrefl, Thomas</creator><creatorcontrib>Fischbacher, Johann ; Kovacs, Alexander ; Gusenbauer, Markus ; Oezelt, Harald ; Exl, Lukas ; Bance, Simon ; Schrefl, Thomas</creatorcontrib><description>The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aab7d1</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>micromagnetics ; permanent magnets ; rare earth</subject><ispartof>Journal of physics. D, Applied physics, 2018-04, Vol.51 (19), p.193002</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</citedby><cites>FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</cites><orcidid>0000-0002-4650-8366 ; 0000-0002-3754-3565 ; 0000-0002-5343-6938 ; 0000-0002-0815-5379 ; 0000-0002-8413-1950 ; 0000-0002-3540-3964 ; 0000-0002-0871-0520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Exl, Lukas</creatorcontrib><creatorcontrib>Bance, Simon</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Micromagnetics of rare-earth efficient permanent magnets</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.</description><subject>micromagnetics</subject><subject>permanent magnets</subject><subject>rare earth</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1jztPxDAQhC0EEuGgp8wPwNzajpNNiU7AIR2igdra-AE5kYfsUPDvSRRER7WrnZnVfIxdC7gVgLgVqhS8LEq1JWoqJ05Y9nc6ZRmAlFxVsjpnFykdAUCXKDKGz62NQ0fvvZ9am_Ih5JGi557i9JH7EFrb-n7KRx876pdt9aZLdhboM_mr37lhbw_3r7s9P7w8Pu3uDtwqxIk3VW1Be1srCFI4bVHLoNCJpkKPJKQodQ0km-Aa52YVrdZEWAcJRaGC2jBY_841U4o-mDG2HcVvI8As5GbBNAumWcnnyM0aaYfRHIev2M8F_7f_AEtHWsE</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Fischbacher, Johann</creator><creator>Kovacs, Alexander</creator><creator>Gusenbauer, Markus</creator><creator>Oezelt, Harald</creator><creator>Exl, Lukas</creator><creator>Bance, Simon</creator><creator>Schrefl, Thomas</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4650-8366</orcidid><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0002-5343-6938</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-8413-1950</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid><orcidid>https://orcid.org/0000-0002-0871-0520</orcidid></search><sort><creationdate>20180420</creationdate><title>Micromagnetics of rare-earth efficient permanent magnets</title><author>Fischbacher, Johann ; Kovacs, Alexander ; Gusenbauer, Markus ; Oezelt, Harald ; Exl, Lukas ; Bance, Simon ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>micromagnetics</topic><topic>permanent magnets</topic><topic>rare earth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Exl, Lukas</creatorcontrib><creatorcontrib>Bance, Simon</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischbacher, Johann</au><au>Kovacs, Alexander</au><au>Gusenbauer, Markus</au><au>Oezelt, Harald</au><au>Exl, Lukas</au><au>Bance, Simon</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromagnetics of rare-earth efficient permanent magnets</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>51</volume><issue>19</issue><spage>193002</spage><pages>193002-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aab7d1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4650-8366</orcidid><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0002-5343-6938</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-8413-1950</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid><orcidid>https://orcid.org/0000-0002-0871-0520</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2018-04, Vol.51 (19), p.193002 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6463_aab7d1 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | micromagnetics permanent magnets rare earth |
title | Micromagnetics of rare-earth efficient permanent magnets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromagnetics%20of%20rare-earth%20efficient%20permanent%20magnets&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Fischbacher,%20Johann&rft.date=2018-04-20&rft.volume=51&rft.issue=19&rft.spage=193002&rft.pages=193002-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aab7d1&rft_dat=%3Ciop_cross%3Edaab7d1%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |