Loading…

Micromagnetics of rare-earth efficient permanent magnets

The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the int...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2018-04, Vol.51 (19), p.193002
Main Authors: Fischbacher, Johann, Kovacs, Alexander, Gusenbauer, Markus, Oezelt, Harald, Exl, Lukas, Bance, Simon, Schrefl, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3
cites cdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3
container_end_page
container_issue 19
container_start_page 193002
container_title Journal of physics. D, Applied physics
container_volume 51
creator Fischbacher, Johann
Kovacs, Alexander
Gusenbauer, Markus
Oezelt, Harald
Exl, Lukas
Bance, Simon
Schrefl, Thomas
description The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.
doi_str_mv 10.1088/1361-6463/aab7d1
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6463_aab7d1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daab7d1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</originalsourceid><addsrcrecordid>eNp1jztPxDAQhC0EEuGgp8wPwNzajpNNiU7AIR2igdra-AE5kYfsUPDvSRRER7WrnZnVfIxdC7gVgLgVqhS8LEq1JWoqJ05Y9nc6ZRmAlFxVsjpnFykdAUCXKDKGz62NQ0fvvZ9am_Ih5JGi557i9JH7EFrb-n7KRx876pdt9aZLdhboM_mr37lhbw_3r7s9P7w8Pu3uDtwqxIk3VW1Be1srCFI4bVHLoNCJpkKPJKQodQ0km-Aa52YVrdZEWAcJRaGC2jBY_841U4o-mDG2HcVvI8As5GbBNAumWcnnyM0aaYfRHIev2M8F_7f_AEtHWsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micromagnetics of rare-earth efficient permanent magnets</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Fischbacher, Johann ; Kovacs, Alexander ; Gusenbauer, Markus ; Oezelt, Harald ; Exl, Lukas ; Bance, Simon ; Schrefl, Thomas</creator><creatorcontrib>Fischbacher, Johann ; Kovacs, Alexander ; Gusenbauer, Markus ; Oezelt, Harald ; Exl, Lukas ; Bance, Simon ; Schrefl, Thomas</creatorcontrib><description>The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aab7d1</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>micromagnetics ; permanent magnets ; rare earth</subject><ispartof>Journal of physics. D, Applied physics, 2018-04, Vol.51 (19), p.193002</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</citedby><cites>FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</cites><orcidid>0000-0002-4650-8366 ; 0000-0002-3754-3565 ; 0000-0002-5343-6938 ; 0000-0002-0815-5379 ; 0000-0002-8413-1950 ; 0000-0002-3540-3964 ; 0000-0002-0871-0520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Exl, Lukas</creatorcontrib><creatorcontrib>Bance, Simon</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Micromagnetics of rare-earth efficient permanent magnets</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.</description><subject>micromagnetics</subject><subject>permanent magnets</subject><subject>rare earth</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1jztPxDAQhC0EEuGgp8wPwNzajpNNiU7AIR2igdra-AE5kYfsUPDvSRRER7WrnZnVfIxdC7gVgLgVqhS8LEq1JWoqJ05Y9nc6ZRmAlFxVsjpnFykdAUCXKDKGz62NQ0fvvZ9am_Ih5JGi557i9JH7EFrb-n7KRx876pdt9aZLdhboM_mr37lhbw_3r7s9P7w8Pu3uDtwqxIk3VW1Be1srCFI4bVHLoNCJpkKPJKQodQ0km-Aa52YVrdZEWAcJRaGC2jBY_841U4o-mDG2HcVvI8As5GbBNAumWcnnyM0aaYfRHIev2M8F_7f_AEtHWsE</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Fischbacher, Johann</creator><creator>Kovacs, Alexander</creator><creator>Gusenbauer, Markus</creator><creator>Oezelt, Harald</creator><creator>Exl, Lukas</creator><creator>Bance, Simon</creator><creator>Schrefl, Thomas</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4650-8366</orcidid><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0002-5343-6938</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-8413-1950</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid><orcidid>https://orcid.org/0000-0002-0871-0520</orcidid></search><sort><creationdate>20180420</creationdate><title>Micromagnetics of rare-earth efficient permanent magnets</title><author>Fischbacher, Johann ; Kovacs, Alexander ; Gusenbauer, Markus ; Oezelt, Harald ; Exl, Lukas ; Bance, Simon ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>micromagnetics</topic><topic>permanent magnets</topic><topic>rare earth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Kovacs, Alexander</creatorcontrib><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Oezelt, Harald</creatorcontrib><creatorcontrib>Exl, Lukas</creatorcontrib><creatorcontrib>Bance, Simon</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischbacher, Johann</au><au>Kovacs, Alexander</au><au>Gusenbauer, Markus</au><au>Oezelt, Harald</au><au>Exl, Lukas</au><au>Bance, Simon</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromagnetics of rare-earth efficient permanent magnets</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>51</volume><issue>19</issue><spage>193002</spage><pages>193002-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet's microstructure is optimized.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aab7d1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4650-8366</orcidid><orcidid>https://orcid.org/0000-0002-3754-3565</orcidid><orcidid>https://orcid.org/0000-0002-5343-6938</orcidid><orcidid>https://orcid.org/0000-0002-0815-5379</orcidid><orcidid>https://orcid.org/0000-0002-8413-1950</orcidid><orcidid>https://orcid.org/0000-0002-3540-3964</orcidid><orcidid>https://orcid.org/0000-0002-0871-0520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2018-04, Vol.51 (19), p.193002
issn 0022-3727
1361-6463
language eng
recordid cdi_iop_journals_10_1088_1361_6463_aab7d1
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects micromagnetics
permanent magnets
rare earth
title Micromagnetics of rare-earth efficient permanent magnets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromagnetics%20of%20rare-earth%20efficient%20permanent%20magnets&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Fischbacher,%20Johann&rft.date=2018-04-20&rft.volume=51&rft.issue=19&rft.spage=193002&rft.pages=193002-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aab7d1&rft_dat=%3Ciop_cross%3Edaab7d1%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b79c05ec930f21d5c852f38d1b78e8a1216590a2bfdbddc858c55aa89f20443f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true