Loading…

Deflections of dynamic momentum flux and electron diamagnetic thrust in a magnetically steered rf plasma thruster

Two-dimensional characterization of the plasma plume is experimentally performed downstream of a magnetically steered radiofrequency plasma thruster, where the ion beam current, the ion saturation current, and the horizontal dynamic momentum flux, are measured by using the retarding field energy ana...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. D, Applied physics Applied physics, 2022-03, Vol.55 (13), p.135201
Main Authors: Imai, Ryoji, Takahashi, Kazunori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two-dimensional characterization of the plasma plume is experimentally performed downstream of a magnetically steered radiofrequency plasma thruster, where the ion beam current, the ion saturation current, and the horizontal dynamic momentum flux, are measured by using the retarding field energy analyzer, the Langmuir probe, and the momentum vector measurement instrument, respectively, in addition to the previously measured horizontal thrust. The measurements show the deflections of the dynamic momentum flux including both the ions and the neutrals; the change in the direction of the dynamic momentum flux is consistent with the previously measured horizontal thrust. Furthermore, the ion saturation current profile implies that the deflected electron-diamagnetic-induced Lorentz force exerted to the magnetic nozzle contributes to the change in the thrust vector. Therefore, it is demonstrated that the deflections of both the dynamic momentum flux and the electron-diamagnetic-induced Lorentz force play an important role in the thrust vector control by the magnetic steering.
ISSN:0022-3727
1361-6463
DOI:10.1088/1361-6463/ac4451