Loading…

Thermal transport properties in monolayer group-IV binary compounds

New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb str...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2020-07, Vol.32 (30), p.305301-305301
Main Authors: Zhang, Qian-Qian, Jia, Pin-Zhen, Chen, Xue-Kun, Zhou, Wu-Xing, Chen, Ke-Qiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3
cites cdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3
container_end_page 305301
container_issue 30
container_start_page 305301
container_title Journal of physics. Condensed matter
container_volume 32
creator Zhang, Qian-Qian
Jia, Pin-Zhen
Chen, Xue-Kun
Zhou, Wu-Xing
Chen, Ke-Qiu
description New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.
doi_str_mv 10.1088/1361-648X/ab81c3
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ab81c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381629046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</originalsourceid><addsrcrecordid>eNp1kM1LwzAUwIMobk7vnqQ3PViXr6XJUYYfg4GXId5CmqTa0TYxaQ_7783o3EnhwYPH7339ALhG8AFBzueIMJQzyj_mquRIkxMwPZZOwRSKBcm54HQCLmLcQggpJ_QcTAhGosAMT8Fy82VDq5qsD6qL3oU-88F5G_raxqzustZ1rlE7G7LP4Aafr96zsu5U2GXatd4NnYmX4KxSTbRXhzwDm-enzfI1X7-9rJaP61wTxvscM22EKISwlGFmGKaF4qJAnBaEG8XEglOlqNEVp7g0pqiMMZXmSiwqWlgyA3fj2HTg92BjL9s6ats0qrNuiBITjhgWkLKEwhHVwcUYbCV9qNt0tERQ7s3JvSa51yRHc6nl5jB9KFtrjg2_qhJwOwK183LrhtClX6VuEyEJTLEgEElvqkTe_0H-u_kHWjKFXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381629046</pqid></control><display><type>article</type><title>Thermal transport properties in monolayer group-IV binary compounds</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zhang, Qian-Qian ; Jia, Pin-Zhen ; Chen, Xue-Kun ; Zhou, Wu-Xing ; Chen, Ke-Qiu</creator><creatorcontrib>Zhang, Qian-Qian ; Jia, Pin-Zhen ; Chen, Xue-Kun ; Zhou, Wu-Xing ; Chen, Ke-Qiu</creatorcontrib><description>New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab81c3</identifier><identifier>PMID: 32197262</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Boltzmann transport equation ; lattice thermal conductivity ; monolayer</subject><ispartof>Journal of physics. Condensed matter, 2020-07, Vol.32 (30), p.305301-305301</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</citedby><cites>FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</cites><orcidid>0000-0003-3546-2443 ; 0000-0001-8627-0498 ; 0000-0002-6006-8248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32197262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian-Qian</creatorcontrib><creatorcontrib>Jia, Pin-Zhen</creatorcontrib><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Zhou, Wu-Xing</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><title>Thermal transport properties in monolayer group-IV binary compounds</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.</description><subject>Boltzmann transport equation</subject><subject>lattice thermal conductivity</subject><subject>monolayer</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAUwIMobk7vnqQ3PViXr6XJUYYfg4GXId5CmqTa0TYxaQ_7783o3EnhwYPH7339ALhG8AFBzueIMJQzyj_mquRIkxMwPZZOwRSKBcm54HQCLmLcQggpJ_QcTAhGosAMT8Fy82VDq5qsD6qL3oU-88F5G_raxqzustZ1rlE7G7LP4Aafr96zsu5U2GXatd4NnYmX4KxSTbRXhzwDm-enzfI1X7-9rJaP61wTxvscM22EKISwlGFmGKaF4qJAnBaEG8XEglOlqNEVp7g0pqiMMZXmSiwqWlgyA3fj2HTg92BjL9s6ats0qrNuiBITjhgWkLKEwhHVwcUYbCV9qNt0tERQ7s3JvSa51yRHc6nl5jB9KFtrjg2_qhJwOwK183LrhtClX6VuEyEJTLEgEElvqkTe_0H-u_kHWjKFXA</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Zhang, Qian-Qian</creator><creator>Jia, Pin-Zhen</creator><creator>Chen, Xue-Kun</creator><creator>Zhou, Wu-Xing</creator><creator>Chen, Ke-Qiu</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3546-2443</orcidid><orcidid>https://orcid.org/0000-0001-8627-0498</orcidid><orcidid>https://orcid.org/0000-0002-6006-8248</orcidid></search><sort><creationdate>20200715</creationdate><title>Thermal transport properties in monolayer group-IV binary compounds</title><author>Zhang, Qian-Qian ; Jia, Pin-Zhen ; Chen, Xue-Kun ; Zhou, Wu-Xing ; Chen, Ke-Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann transport equation</topic><topic>lattice thermal conductivity</topic><topic>monolayer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian-Qian</creatorcontrib><creatorcontrib>Jia, Pin-Zhen</creatorcontrib><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Zhou, Wu-Xing</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian-Qian</au><au>Jia, Pin-Zhen</au><au>Chen, Xue-Kun</au><au>Zhou, Wu-Xing</au><au>Chen, Ke-Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport properties in monolayer group-IV binary compounds</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>32</volume><issue>30</issue><spage>305301</spage><epage>305301</epage><pages>305301-305301</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>32197262</pmid><doi>10.1088/1361-648X/ab81c3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3546-2443</orcidid><orcidid>https://orcid.org/0000-0001-8627-0498</orcidid><orcidid>https://orcid.org/0000-0002-6006-8248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2020-07, Vol.32 (30), p.305301-305301
issn 0953-8984
1361-648X
language eng
recordid cdi_iop_journals_10_1088_1361_648X_ab81c3
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Boltzmann transport equation
lattice thermal conductivity
monolayer
title Thermal transport properties in monolayer group-IV binary compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20properties%20in%20monolayer%20group-IV%20binary%20compounds&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zhang,%20Qian-Qian&rft.date=2020-07-15&rft.volume=32&rft.issue=30&rft.spage=305301&rft.epage=305301&rft.pages=305301-305301&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab81c3&rft_dat=%3Cproquest_iop_j%3E2381629046%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2381629046&rft_id=info:pmid/32197262&rfr_iscdi=true