Loading…
Thermal transport properties in monolayer group-IV binary compounds
New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb str...
Saved in:
Published in: | Journal of physics. Condensed matter 2020-07, Vol.32 (30), p.305301-305301 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3 |
container_end_page | 305301 |
container_issue | 30 |
container_start_page | 305301 |
container_title | Journal of physics. Condensed matter |
container_volume | 32 |
creator | Zhang, Qian-Qian Jia, Pin-Zhen Chen, Xue-Kun Zhou, Wu-Xing Chen, Ke-Qiu |
description | New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport. |
doi_str_mv | 10.1088/1361-648X/ab81c3 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_648X_ab81c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381629046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</originalsourceid><addsrcrecordid>eNp1kM1LwzAUwIMobk7vnqQ3PViXr6XJUYYfg4GXId5CmqTa0TYxaQ_7783o3EnhwYPH7339ALhG8AFBzueIMJQzyj_mquRIkxMwPZZOwRSKBcm54HQCLmLcQggpJ_QcTAhGosAMT8Fy82VDq5qsD6qL3oU-88F5G_raxqzustZ1rlE7G7LP4Aafr96zsu5U2GXatd4NnYmX4KxSTbRXhzwDm-enzfI1X7-9rJaP61wTxvscM22EKISwlGFmGKaF4qJAnBaEG8XEglOlqNEVp7g0pqiMMZXmSiwqWlgyA3fj2HTg92BjL9s6ats0qrNuiBITjhgWkLKEwhHVwcUYbCV9qNt0tERQ7s3JvSa51yRHc6nl5jB9KFtrjg2_qhJwOwK183LrhtClX6VuEyEJTLEgEElvqkTe_0H-u_kHWjKFXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381629046</pqid></control><display><type>article</type><title>Thermal transport properties in monolayer group-IV binary compounds</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zhang, Qian-Qian ; Jia, Pin-Zhen ; Chen, Xue-Kun ; Zhou, Wu-Xing ; Chen, Ke-Qiu</creator><creatorcontrib>Zhang, Qian-Qian ; Jia, Pin-Zhen ; Chen, Xue-Kun ; Zhou, Wu-Xing ; Chen, Ke-Qiu</creatorcontrib><description>New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab81c3</identifier><identifier>PMID: 32197262</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Boltzmann transport equation ; lattice thermal conductivity ; monolayer</subject><ispartof>Journal of physics. Condensed matter, 2020-07, Vol.32 (30), p.305301-305301</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</citedby><cites>FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</cites><orcidid>0000-0003-3546-2443 ; 0000-0001-8627-0498 ; 0000-0002-6006-8248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32197262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian-Qian</creatorcontrib><creatorcontrib>Jia, Pin-Zhen</creatorcontrib><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Zhou, Wu-Xing</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><title>Thermal transport properties in monolayer group-IV binary compounds</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.</description><subject>Boltzmann transport equation</subject><subject>lattice thermal conductivity</subject><subject>monolayer</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAUwIMobk7vnqQ3PViXr6XJUYYfg4GXId5CmqTa0TYxaQ_7783o3EnhwYPH7339ALhG8AFBzueIMJQzyj_mquRIkxMwPZZOwRSKBcm54HQCLmLcQggpJ_QcTAhGosAMT8Fy82VDq5qsD6qL3oU-88F5G_raxqzustZ1rlE7G7LP4Aafr96zsu5U2GXatd4NnYmX4KxSTbRXhzwDm-enzfI1X7-9rJaP61wTxvscM22EKISwlGFmGKaF4qJAnBaEG8XEglOlqNEVp7g0pqiMMZXmSiwqWlgyA3fj2HTg92BjL9s6ats0qrNuiBITjhgWkLKEwhHVwcUYbCV9qNt0tERQ7s3JvSa51yRHc6nl5jB9KFtrjg2_qhJwOwK183LrhtClX6VuEyEJTLEgEElvqkTe_0H-u_kHWjKFXA</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Zhang, Qian-Qian</creator><creator>Jia, Pin-Zhen</creator><creator>Chen, Xue-Kun</creator><creator>Zhou, Wu-Xing</creator><creator>Chen, Ke-Qiu</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3546-2443</orcidid><orcidid>https://orcid.org/0000-0001-8627-0498</orcidid><orcidid>https://orcid.org/0000-0002-6006-8248</orcidid></search><sort><creationdate>20200715</creationdate><title>Thermal transport properties in monolayer group-IV binary compounds</title><author>Zhang, Qian-Qian ; Jia, Pin-Zhen ; Chen, Xue-Kun ; Zhou, Wu-Xing ; Chen, Ke-Qiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boltzmann transport equation</topic><topic>lattice thermal conductivity</topic><topic>monolayer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian-Qian</creatorcontrib><creatorcontrib>Jia, Pin-Zhen</creatorcontrib><creatorcontrib>Chen, Xue-Kun</creatorcontrib><creatorcontrib>Zhou, Wu-Xing</creatorcontrib><creatorcontrib>Chen, Ke-Qiu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian-Qian</au><au>Jia, Pin-Zhen</au><au>Chen, Xue-Kun</au><au>Zhou, Wu-Xing</au><au>Chen, Ke-Qiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transport properties in monolayer group-IV binary compounds</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>32</volume><issue>30</issue><spage>305301</spage><epage>305301</epage><pages>305301-305301</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>New classes of two-dimensional (2D) materials beyond graphene are now attracting intense interest owing to their unique properties and functions. By combining first-principle calculation and the Boltzmann transport equation, we investigated the thermal transport properties of monolayer honeycomb structures of group-IV (C, Si, Ge, Sn) binary compounds. It is found that the thermal conductivity (κ) of these compounds span an enormously large range from 0.04 to 144.29 W m−1 K−1, demonstrating promising applications to nanoscale thermoelectrics and thermal management. The κ of low-buckled structures such as SiGe, SiSn and GeSn is lower than that of planar structures such as SiC, GeC and SnC, which can be ascribed to heavy atomic mass and broken in-plane reflection symmetry. Moreover, the κ of planar or low-buckled compounds with Sn atom is much lower than others, and the detailed origin for this phenomenon and contribution of different phonon modes to the κ are investigated. This work has fully studied the diversity of the thermal phenomenon and provides more options for application on thermal transport.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>32197262</pmid><doi>10.1088/1361-648X/ab81c3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3546-2443</orcidid><orcidid>https://orcid.org/0000-0001-8627-0498</orcidid><orcidid>https://orcid.org/0000-0002-6006-8248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2020-07, Vol.32 (30), p.305301-305301 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_648X_ab81c3 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Boltzmann transport equation lattice thermal conductivity monolayer |
title | Thermal transport properties in monolayer group-IV binary compounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transport%20properties%20in%20monolayer%20group-IV%20binary%20compounds&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zhang,%20Qian-Qian&rft.date=2020-07-15&rft.volume=32&rft.issue=30&rft.spage=305301&rft.epage=305301&rft.pages=305301-305301&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ab81c3&rft_dat=%3Cproquest_iop_j%3E2381629046%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-26cd99799e4626d6247a897184738da69584aa4dcf842bdd7fdddfc8a95f47e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2381629046&rft_id=info:pmid/32197262&rfr_iscdi=true |