Loading…
Development and validation of a high-resolution mapping platform to aid in the public awareness of radiological hazards
The distribution, quantification and exposure-related effects of radiation in the environment, arising from both natural and anthropogenic sources, is of great (and growing) concern for global populations. Recent events at the Fukushima Daiichi Nuclear Plant (FDNPP) have further highlighted the impo...
Saved in:
Published in: | Journal of radiological protection 2018-03, Vol.38 (1), p.329-342, Article 329 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The distribution, quantification and exposure-related effects of radiation in the environment, arising from both natural and anthropogenic sources, is of great (and growing) concern for global populations. Recent events at the Fukushima Daiichi Nuclear Plant (FDNPP) have further highlighted the importance of developing radiation mapping technologies that not only contribute to the continued assessment of contamination, but can serve as an educational tool for members of the public regarding both its behaviour and extent. With an even greater number of people possessing smart-phone technology, a lightweight and portable 'connected system' has been developed to demonstrate to users the calibrated radioactive dose rate in an area, viewable in real-time through a dedicated phone application. As well as allowing for system users to be alerted where variations in dose rate are experienced, the combined results from multiple systems are viewable through a custom-built desktop application-permitting the output obtained via any number of units to be similarly displayed in real-time. A successful initial trialling of the system is described at a former tin mine in Cornwall (south-west England)-known to exhibit low, but identifiable radiation anomalies in discrete areas. Additional applications outside of its educational usage are also discussed. |
---|---|
ISSN: | 0952-4746 1361-6498 |
DOI: | 10.1088/1361-6498/aaa914 |