Loading…
A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations
This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals....
Saved in:
Published in: | Modelling and simulation in materials science and engineering 2017-06, Vol.25 (4), p.44001 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53 |
container_end_page | |
container_issue | 4 |
container_start_page | 44001 |
container_title | Modelling and simulation in materials science and engineering |
container_volume | 25 |
creator | Messner, Mark C Rhee, Moono Arsenlis, Athanasios Barton, Nathan R |
description | This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations. |
doi_str_mv | 10.1088/1361-651X/aa687a |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_651X_aa687a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>msmsaa687a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYHWHfSpNn0uCx-wYIXBW8lX9WsaVOSLth_b-qKN0_zzjvzDMyL0DWBWwJCrAjlpOAVeVtJycVanqDFn3WKFlDzqgBa03N0kdIeACpRrheo32AdpzRKjwcv0-i0GyfcBWM9bkPEybsBux5_2C_5Hvq8pn1IFg9Sf1qDO5vJhJVMuQk9Ni7paEc7Cx-0HF02k-sO_kemS3TWZsBe_dYler2_e9k-Frvnh6ftZlfoUsBYCK445VSDppQB1UJAyYjkYIwuK800I6xmrSJGAbWtNS2rVZ4rpbKjKrpEcLyrY0gp2rYZoutknBoCzZxXM4fTzOE0x7wycnNEXBiafTjE_Gz6f_0boMpvTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Messner, Mark C ; Rhee, Moono ; Arsenlis, Athanasios ; Barton, Nathan R</creator><creatorcontrib>Messner, Mark C ; Rhee, Moono ; Arsenlis, Athanasios ; Barton, Nathan R</creatorcontrib><description>This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/aa687a</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crystal plasticity ; discrete dislocation simulations ; HCP metals ; model development</subject><ispartof>Modelling and simulation in materials science and engineering, 2017-06, Vol.25 (4), p.44001</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</citedby><cites>FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</cites><orcidid>0000-0002-0040-4385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Messner, Mark C</creatorcontrib><creatorcontrib>Rhee, Moono</creatorcontrib><creatorcontrib>Arsenlis, Athanasios</creatorcontrib><creatorcontrib>Barton, Nathan R</creatorcontrib><title>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMS</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.</description><subject>crystal plasticity</subject><subject>discrete dislocation simulations</subject><subject>HCP metals</subject><subject>model development</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYHWHfSpNn0uCx-wYIXBW8lX9WsaVOSLth_b-qKN0_zzjvzDMyL0DWBWwJCrAjlpOAVeVtJycVanqDFn3WKFlDzqgBa03N0kdIeACpRrheo32AdpzRKjwcv0-i0GyfcBWM9bkPEybsBux5_2C_5Hvq8pn1IFg9Sf1qDO5vJhJVMuQk9Ni7paEc7Cx-0HF02k-sO_kemS3TWZsBe_dYler2_e9k-Frvnh6ftZlfoUsBYCK445VSDppQB1UJAyYjkYIwuK800I6xmrSJGAbWtNS2rVZ4rpbKjKrpEcLyrY0gp2rYZoutknBoCzZxXM4fTzOE0x7wycnNEXBiafTjE_Gz6f_0boMpvTQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Messner, Mark C</creator><creator>Rhee, Moono</creator><creator>Arsenlis, Athanasios</creator><creator>Barton, Nathan R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0040-4385</orcidid></search><sort><creationdate>20170601</creationdate><title>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</title><author>Messner, Mark C ; Rhee, Moono ; Arsenlis, Athanasios ; Barton, Nathan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>crystal plasticity</topic><topic>discrete dislocation simulations</topic><topic>HCP metals</topic><topic>model development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messner, Mark C</creatorcontrib><creatorcontrib>Rhee, Moono</creatorcontrib><creatorcontrib>Arsenlis, Athanasios</creatorcontrib><creatorcontrib>Barton, Nathan R</creatorcontrib><collection>CrossRef</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messner, Mark C</au><au>Rhee, Moono</au><au>Arsenlis, Athanasios</au><au>Barton, Nathan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMS</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>25</volume><issue>4</issue><spage>44001</spage><pages>44001-</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-651X/aa687a</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0040-4385</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-0393 |
ispartof | Modelling and simulation in materials science and engineering, 2017-06, Vol.25 (4), p.44001 |
issn | 0965-0393 1361-651X |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_651X_aa687a |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | crystal plasticity discrete dislocation simulations HCP metals model development |
title | A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20crystal%20plasticity%20model%20for%20slip%20in%20hexagonal%20close%20packed%20metals%20based%20on%20discrete%20dislocation%20simulations&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Messner,%20Mark%20C&rft.date=2017-06-01&rft.volume=25&rft.issue=4&rft.spage=44001&rft.pages=44001-&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/aa687a&rft_dat=%3Ciop_cross%3Emsmsaa687a%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |