Loading…

A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations

This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals....

Full description

Saved in:
Bibliographic Details
Published in:Modelling and simulation in materials science and engineering 2017-06, Vol.25 (4), p.44001
Main Authors: Messner, Mark C, Rhee, Moono, Arsenlis, Athanasios, Barton, Nathan R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53
cites cdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53
container_end_page
container_issue 4
container_start_page 44001
container_title Modelling and simulation in materials science and engineering
container_volume 25
creator Messner, Mark C
Rhee, Moono
Arsenlis, Athanasios
Barton, Nathan R
description This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.
doi_str_mv 10.1088/1361-651X/aa687a
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_651X_aa687a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>msmsaa687a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePeYHWHfSpNn0uCx-wYIXBW8lX9WsaVOSLth_b-qKN0_zzjvzDMyL0DWBWwJCrAjlpOAVeVtJycVanqDFn3WKFlDzqgBa03N0kdIeACpRrheo32AdpzRKjwcv0-i0GyfcBWM9bkPEybsBux5_2C_5Hvq8pn1IFg9Sf1qDO5vJhJVMuQk9Ni7paEc7Cx-0HF02k-sO_kemS3TWZsBe_dYler2_e9k-Frvnh6ftZlfoUsBYCK445VSDppQB1UJAyYjkYIwuK800I6xmrSJGAbWtNS2rVZ4rpbKjKrpEcLyrY0gp2rYZoutknBoCzZxXM4fTzOE0x7wycnNEXBiafTjE_Gz6f_0boMpvTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Messner, Mark C ; Rhee, Moono ; Arsenlis, Athanasios ; Barton, Nathan R</creator><creatorcontrib>Messner, Mark C ; Rhee, Moono ; Arsenlis, Athanasios ; Barton, Nathan R</creatorcontrib><description>This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/aa687a</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crystal plasticity ; discrete dislocation simulations ; HCP metals ; model development</subject><ispartof>Modelling and simulation in materials science and engineering, 2017-06, Vol.25 (4), p.44001</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</citedby><cites>FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</cites><orcidid>0000-0002-0040-4385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Messner, Mark C</creatorcontrib><creatorcontrib>Rhee, Moono</creatorcontrib><creatorcontrib>Arsenlis, Athanasios</creatorcontrib><creatorcontrib>Barton, Nathan R</creatorcontrib><title>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMS</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.</description><subject>crystal plasticity</subject><subject>discrete dislocation simulations</subject><subject>HCP metals</subject><subject>model development</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePeYHWHfSpNn0uCx-wYIXBW8lX9WsaVOSLth_b-qKN0_zzjvzDMyL0DWBWwJCrAjlpOAVeVtJycVanqDFn3WKFlDzqgBa03N0kdIeACpRrheo32AdpzRKjwcv0-i0GyfcBWM9bkPEybsBux5_2C_5Hvq8pn1IFg9Sf1qDO5vJhJVMuQk9Ni7paEc7Cx-0HF02k-sO_kemS3TWZsBe_dYler2_e9k-Frvnh6ftZlfoUsBYCK445VSDppQB1UJAyYjkYIwuK800I6xmrSJGAbWtNS2rVZ4rpbKjKrpEcLyrY0gp2rYZoutknBoCzZxXM4fTzOE0x7wycnNEXBiafTjE_Gz6f_0boMpvTQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Messner, Mark C</creator><creator>Rhee, Moono</creator><creator>Arsenlis, Athanasios</creator><creator>Barton, Nathan R</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0040-4385</orcidid></search><sort><creationdate>20170601</creationdate><title>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</title><author>Messner, Mark C ; Rhee, Moono ; Arsenlis, Athanasios ; Barton, Nathan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>crystal plasticity</topic><topic>discrete dislocation simulations</topic><topic>HCP metals</topic><topic>model development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messner, Mark C</creatorcontrib><creatorcontrib>Rhee, Moono</creatorcontrib><creatorcontrib>Arsenlis, Athanasios</creatorcontrib><creatorcontrib>Barton, Nathan R</creatorcontrib><collection>CrossRef</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messner, Mark C</au><au>Rhee, Moono</au><au>Arsenlis, Athanasios</au><au>Barton, Nathan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMS</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>25</volume><issue>4</issue><spage>44001</spage><pages>44001-</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning-feature selection by regularized regression and cross-validation-to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-651X/aa687a</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0040-4385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2017-06, Vol.25 (4), p.44001
issn 0965-0393
1361-651X
language eng
recordid cdi_iop_journals_10_1088_1361_651X_aa687a
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects crystal plasticity
discrete dislocation simulations
HCP metals
model development
title A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20crystal%20plasticity%20model%20for%20slip%20in%20hexagonal%20close%20packed%20metals%20based%20on%20discrete%20dislocation%20simulations&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Messner,%20Mark%20C&rft.date=2017-06-01&rft.volume=25&rft.issue=4&rft.spage=44001&rft.pages=44001-&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/aa687a&rft_dat=%3Ciop_cross%3Emsmsaa687a%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c280t-86b6363c0c33403c880241a60ddc25c4c41494fb1db03efedf49b1a6bbbdb0b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true