Loading…
High performance acetone sensor based on γ-Fe2O3/Al-ZnO nanocomposites
Ternary nanocomposites made of γ-iron oxide and aluminum-doped zinc oxide (γ-Fe2O3/Al-ZnO NCs), with different metal oxides ratio (0%-100%) were prepared through a solvothermal sol-gel process. The synthesized materials were characterized by x-ray diffraction, UV-vis spectroscopy, photoluminescence...
Saved in:
Published in: | Nanotechnology 2019-02, Vol.30 (5), p.055502-055502 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ternary nanocomposites made of γ-iron oxide and aluminum-doped zinc oxide (γ-Fe2O3/Al-ZnO NCs), with different metal oxides ratio (0%-100%) were prepared through a solvothermal sol-gel process. The synthesized materials were characterized by x-ray diffraction, UV-vis spectroscopy, photoluminescence (PL), scanning electron microscope and BET analysis. Characterization results demonstrated that the ternary γ-Fe2O3/Al-ZnO NCs are mainly constituted by γ-Fe2O3 and Al-ZnO individual phases, while structural and physical properties like surface area, pore size, optical band gap, PL and electrical conductivity were deeply affected by the composition of nanocomposite. The synthesized γ-Fe2O3/Al-ZnO NCs were employed to prepare conductometric gas sensors, then their sensing performances toward acetone were also investigated. Results revealed enhanced sensing performance of nanocomposites than both pure γ-Fe2O3 and Al-ZnO phases. In particular, the γ-Fe2O3(33%)/Al-ZnO based gas sensor showed the best sensing properties, like a high response of Rair/Rgas = 29, a short response time of 3 s, in addition to an improved selectivity toward acetone versus ethanol at an operating temperature of 200 °C. Overall, ternary γ-Fe2O3/Al-ZnO NCs appear to be promising for the development of conductometric acetone sensors. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/aaf069 |