Loading…
Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space
Encapsulation of metal oxide nanoparticles (MO NPs) inside metal-organic frameworks (MOFs) has been realized successfully via surfactant-assisted nano-confined space strategy, which is a universal method for various MO NPs@MOFs. The size of MO NPs was limited by the confined nano-space and could be...
Saved in:
Published in: | Nanotechnology 2020-04, Vol.31 (25), p.255604-255604 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Encapsulation of metal oxide nanoparticles (MO NPs) inside metal-organic frameworks (MOFs) has been realized successfully via surfactant-assisted nano-confined space strategy, which is a universal method for various MO NPs@MOFs. The size of MO NPs was limited by the confined nano-space and could be adjusted to a certain extent. The synthesis mechanism of MO NPs@MOFs was revealed via detailed structural characterizations and a series of control experiments. Surfactants introduced during MOFs (CuBDC, BDC = 1,4-benzenedicarboxylic acid) formation process plays a very important role in producing uniform voids of nano-confined space. Cu ions in MOF frameworks were directly used as precursors to fabricate CuO NPs in these confined void spaces. The synthesized CuO@CuBDC composites showed excellent catalytic activity in C-S cross-coupling reactions and dye pollutant photo-degradation reactions. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab79ae |