Loading…

Vanadium as a Ti-like mediator boosting electronic transmission in Fe-based MOFs for photocatalytic sterilization

Efficient metal-organic frameworks (MOFs) photocatalytic bactericidal catalysts are urgently needed in water purification. Herein, a Fe-MOF (MIL-88B-NH2(V1Fe5) with promoted electron transport was achieved by vanadium (V) ions doping and V/Fe ratio optimization, showing excellent photocatalytic bact...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2024-10, Vol.35 (42), p.425702
Main Authors: Li, Rui, Hu, Huilin, Xiong, Furong, Xue, Xiang, Wu, Minqi, Zuo, Xuan, Zhang, Wang, Pan, Xiangliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Efficient metal-organic frameworks (MOFs) photocatalytic bactericidal catalysts are urgently needed in water purification. Herein, a Fe-MOF (MIL-88B-NH2(V1Fe5) with promoted electron transport was achieved by vanadium (V) ions doping and V/Fe ratio optimization, showing excellent photocatalytic bactericidal activity against Escherichia coli under visible light irradiation (99.92%). The efficient antibacterial mechanism, V as a Ti-like mediator boosting electronic transmission in MIL-88B-NH2(V1Fe5), was revealed by its band structure, transient photocurrent, electrochemical impedance spectroscopy, and scavenger quenching experiments. The enhancement of photocatalytic bactericidal performance of Fe-MOFs by V-ion-doping was confirmed by two other Fe-MOFs, MIL-53-NH2(V1Fe5) and MIL-101-NH2(V1Fe5), with the same metal ions and ligands, both of which have higher performance than the corresponding undoped MOFs. Among them, MIL-88B-NH2(V1Fe5) exhibits the highest photocatalytic bactericidal activity due to its suitable metal clusters ([M(μ3-O)] cluster) and topological structure (three-dimensional rhomboid network structure). This work demonstrated the amplification effect of V ion doping on electron transport in Fe-MOFs photocatalysts.&#xD.
ISSN:0957-4484
1361-6528
1361-6528
DOI:10.1088/1361-6528/ad66d6