Loading…
Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems
Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized b...
Saved in:
Published in: | Nonlinearity 2020-06, Vol.33 (6), p.2853-2904 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103 |
container_end_page | 2904 |
container_issue | 6 |
container_start_page | 2853 |
container_title | Nonlinearity |
container_volume | 33 |
creator | Nyman, Karl H M Ashwin, Peter Ditlevsen, Peter D |
description | Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence. |
doi_str_mv | 10.1088/1361-6544/ab7292 |
format | article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ab7292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab7292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPINSPxI6XUPGSKrEBtpbjB3LlJpUnEfTvSUjFjtWM5s4d3TkIXVNyS0ldrygXtBBVWa5MI5liJ2jxNzpFC6IqWkhJq3N0AbAlhNKa8QX6uI9hyNb0sWtxF7DNsY_WJAy-B2xah7NP5vuog40p_faAY4shtp9DMhkHA30BqfvCcIDe7-ASnQWTwF8d6xK9Pz68rZ-LzevTy_puU1jOWF9wVZMgjTVKODK-YQQrHWG2cnWjpA9sTN04T52rOVWlE9JWkjBFSyEnA18iMt-1uQPIPuh9jjuTD5oSPXHREwQ9QdAzl9FyM1tit9fbbsjtGPD_9R818GRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</title><source>Institute of Physics</source><creator>Nyman, Karl H M ; Ashwin, Peter ; Ditlevsen, Peter D</creator><creatorcontrib>Nyman, Karl H M ; Ashwin, Peter ; Ditlevsen, Peter D</creatorcontrib><description>Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab7292</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bifurcation ; fast-slow dynamics ; relaxation oscillation ; singularity</subject><ispartof>Nonlinearity, 2020-06, Vol.33 (6), p.2853-2904</ispartof><rights>2020 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</citedby><cites>FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</cites><orcidid>0000-0002-6504-4229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nyman, Karl H M</creatorcontrib><creatorcontrib>Ashwin, Peter</creatorcontrib><creatorcontrib>Ditlevsen, Peter D</creatorcontrib><title>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.</description><subject>bifurcation</subject><subject>fast-slow dynamics</subject><subject>relaxation oscillation</subject><subject>singularity</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPINSPxI6XUPGSKrEBtpbjB3LlJpUnEfTvSUjFjtWM5s4d3TkIXVNyS0ldrygXtBBVWa5MI5liJ2jxNzpFC6IqWkhJq3N0AbAlhNKa8QX6uI9hyNb0sWtxF7DNsY_WJAy-B2xah7NP5vuog40p_faAY4shtp9DMhkHA30BqfvCcIDe7-ASnQWTwF8d6xK9Pz68rZ-LzevTy_puU1jOWF9wVZMgjTVKODK-YQQrHWG2cnWjpA9sTN04T52rOVWlE9JWkjBFSyEnA18iMt-1uQPIPuh9jjuTD5oSPXHREwQ9QdAzl9FyM1tit9fbbsjtGPD_9R818GRo</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nyman, Karl H M</creator><creator>Ashwin, Peter</creator><creator>Ditlevsen, Peter D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6504-4229</orcidid></search><sort><creationdate>20200601</creationdate><title>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</title><author>Nyman, Karl H M ; Ashwin, Peter ; Ditlevsen, Peter D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifurcation</topic><topic>fast-slow dynamics</topic><topic>relaxation oscillation</topic><topic>singularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyman, Karl H M</creatorcontrib><creatorcontrib>Ashwin, Peter</creatorcontrib><creatorcontrib>Ditlevsen, Peter D</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyman, Karl H M</au><au>Ashwin, Peter</au><au>Ditlevsen, Peter D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>33</volume><issue>6</issue><spage>2853</spage><epage>2904</epage><pages>2853-2904</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab7292</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-6504-4229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2020-06, Vol.33 (6), p.2853-2904 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_iop_journals_10_1088_1361_6544_ab7292 |
source | Institute of Physics |
subjects | bifurcation fast-slow dynamics relaxation oscillation singularity |
title | Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20of%20critical%20sets%20and%20relaxation%20oscillations%20in%20singular%20fast-slow%20systems&rft.jtitle=Nonlinearity&rft.au=Nyman,%20Karl%20H%20M&rft.date=2020-06-01&rft.volume=33&rft.issue=6&rft.spage=2853&rft.epage=2904&rft.pages=2853-2904&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab7292&rft_dat=%3Ciop_cross%3Enonab7292%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |