Loading…

Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems

Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized b...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2020-06, Vol.33 (6), p.2853-2904
Main Authors: Nyman, Karl H M, Ashwin, Peter, Ditlevsen, Peter D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103
cites cdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103
container_end_page 2904
container_issue 6
container_start_page 2853
container_title Nonlinearity
container_volume 33
creator Nyman, Karl H M
Ashwin, Peter
Ditlevsen, Peter D
description Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.
doi_str_mv 10.1088/1361-6544/ab7292
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ab7292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab7292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPINSPxI6XUPGSKrEBtpbjB3LlJpUnEfTvSUjFjtWM5s4d3TkIXVNyS0ldrygXtBBVWa5MI5liJ2jxNzpFC6IqWkhJq3N0AbAlhNKa8QX6uI9hyNb0sWtxF7DNsY_WJAy-B2xah7NP5vuog40p_faAY4shtp9DMhkHA30BqfvCcIDe7-ASnQWTwF8d6xK9Pz68rZ-LzevTy_puU1jOWF9wVZMgjTVKODK-YQQrHWG2cnWjpA9sTN04T52rOVWlE9JWkjBFSyEnA18iMt-1uQPIPuh9jjuTD5oSPXHREwQ9QdAzl9FyM1tit9fbbsjtGPD_9R818GRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</title><source>Institute of Physics</source><creator>Nyman, Karl H M ; Ashwin, Peter ; Ditlevsen, Peter D</creator><creatorcontrib>Nyman, Karl H M ; Ashwin, Peter ; Ditlevsen, Peter D</creatorcontrib><description>Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab7292</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>bifurcation ; fast-slow dynamics ; relaxation oscillation ; singularity</subject><ispartof>Nonlinearity, 2020-06, Vol.33 (6), p.2853-2904</ispartof><rights>2020 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</citedby><cites>FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</cites><orcidid>0000-0002-6504-4229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nyman, Karl H M</creatorcontrib><creatorcontrib>Ashwin, Peter</creatorcontrib><creatorcontrib>Ditlevsen, Peter D</creatorcontrib><title>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.</description><subject>bifurcation</subject><subject>fast-slow dynamics</subject><subject>relaxation oscillation</subject><subject>singularity</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPINSPxI6XUPGSKrEBtpbjB3LlJpUnEfTvSUjFjtWM5s4d3TkIXVNyS0ldrygXtBBVWa5MI5liJ2jxNzpFC6IqWkhJq3N0AbAlhNKa8QX6uI9hyNb0sWtxF7DNsY_WJAy-B2xah7NP5vuog40p_faAY4shtp9DMhkHA30BqfvCcIDe7-ASnQWTwF8d6xK9Pz68rZ-LzevTy_puU1jOWF9wVZMgjTVKODK-YQQrHWG2cnWjpA9sTN04T52rOVWlE9JWkjBFSyEnA18iMt-1uQPIPuh9jjuTD5oSPXHREwQ9QdAzl9FyM1tit9fbbsjtGPD_9R818GRo</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Nyman, Karl H M</creator><creator>Ashwin, Peter</creator><creator>Ditlevsen, Peter D</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6504-4229</orcidid></search><sort><creationdate>20200601</creationdate><title>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</title><author>Nyman, Karl H M ; Ashwin, Peter ; Ditlevsen, Peter D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bifurcation</topic><topic>fast-slow dynamics</topic><topic>relaxation oscillation</topic><topic>singularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyman, Karl H M</creatorcontrib><creatorcontrib>Ashwin, Peter</creatorcontrib><creatorcontrib>Ditlevsen, Peter D</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyman, Karl H M</au><au>Ashwin, Peter</au><au>Ditlevsen, Peter D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>33</volume><issue>6</issue><spage>2853</spage><epage>2904</epage><pages>2853-2904</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab7292</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-6504-4229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2020-06, Vol.33 (6), p.2853-2904
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_ab7292
source Institute of Physics
subjects bifurcation
fast-slow dynamics
relaxation oscillation
singularity
title Bifurcation of critical sets and relaxation oscillations in singular fast-slow systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20of%20critical%20sets%20and%20relaxation%20oscillations%20in%20singular%20fast-slow%20systems&rft.jtitle=Nonlinearity&rft.au=Nyman,%20Karl%20H%20M&rft.date=2020-06-01&rft.volume=33&rft.issue=6&rft.spage=2853&rft.epage=2904&rft.pages=2853-2904&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab7292&rft_dat=%3Ciop_cross%3Enonab7292%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-3980f7aca96d0108a624d02c5d8b97ef2951bde1dd83194d67c570291467d0103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true