Loading…

Heat-content and diffusive leakage from material sets in the low-diffusivity limit

We generalize leading-order asymptotics of a form of the heat content of a submanifold (van den Berg & Gilkey 2015) to the setting of time-dependent diffusion processes in the limit of vanishing diffusivity. Such diffusion processes arise naturally when advection–diffusion processes are viewed i...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2021-10, Vol.34 (10), p.7303-7321
Main Authors: Schilling, Nathanael, Karrasch, Daniel, Junge, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3
cites cdi_FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3
container_end_page 7321
container_issue 10
container_start_page 7303
container_title Nonlinearity
container_volume 34
creator Schilling, Nathanael
Karrasch, Daniel
Junge, Oliver
description We generalize leading-order asymptotics of a form of the heat content of a submanifold (van den Berg & Gilkey 2015) to the setting of time-dependent diffusion processes in the limit of vanishing diffusivity. Such diffusion processes arise naturally when advection–diffusion processes are viewed in Lagrangian coordinates. We prove that as diffusivity ɛ goes to zero, the diffusive transport out of a material set S under the time-dependent, mass-preserving advection–diffusion equation with initial condition given by the characteristic function 1 S , is ε / π d A ¯ ( ∂ S ) + o ( ε ) . The surface measure d A ¯ is that of the so-called geometry of mixing , as introduced in (Karrasch & Keller 2020). We apply our result to the characterisation of coherent structures in time-dependent dynamical systems.
doi_str_mv 10.1088/1361-6544/ac18b1
format article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6544_ac18b1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac18b1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKt3j_kAxuZtkt3NUYpaoSCo95DNvmjq_ilJqvTb29LqzdPA4zePmSHkGvgt8LqegSiBlUrKmXVQN3BCJn-nUzLhWgGrKlDn5CKlFecAdSEm5GWBNjM3DhmHTO3Q0jZ4v0nhC2mH9tO-I_Vx7GlvM8ZgO5owJxoGmj92xPjNfvmQt7QLfciX5MzbLuHVUafk9eH-bb5gy-fHp_ndkjlRFJn5qpWVRC-htK5oy0oIpxW6WnlUSgrdSERlwVe-0ai1BIcoG19DrRsUU8IPX10cU4rozTqG3satAW72i5h9fbOvbw6L7Cw3B0sY12Y1buKwi_c__gPkSWPD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat-content and diffusive leakage from material sets in the low-diffusivity limit</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Schilling, Nathanael ; Karrasch, Daniel ; Junge, Oliver</creator><creatorcontrib>Schilling, Nathanael ; Karrasch, Daniel ; Junge, Oliver</creatorcontrib><description>We generalize leading-order asymptotics of a form of the heat content of a submanifold (van den Berg &amp; Gilkey 2015) to the setting of time-dependent diffusion processes in the limit of vanishing diffusivity. Such diffusion processes arise naturally when advection–diffusion processes are viewed in Lagrangian coordinates. We prove that as diffusivity ɛ goes to zero, the diffusive transport out of a material set S under the time-dependent, mass-preserving advection–diffusion equation with initial condition given by the characteristic function 1 S , is ε / π d A ¯ ( ∂ S ) + o ( ε ) . The surface measure d A ¯ is that of the so-called geometry of mixing , as introduced in (Karrasch &amp; Keller 2020). We apply our result to the characterisation of coherent structures in time-dependent dynamical systems.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac18b1</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>advection diffusion equation ; finite time coherent sets ; heat content</subject><ispartof>Nonlinearity, 2021-10, Vol.34 (10), p.7303-7321</ispartof><rights>2021 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3</citedby><cites>FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3</cites><orcidid>0000-0001-9403-6511 ; 0000-0002-3435-307X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schilling, Nathanael</creatorcontrib><creatorcontrib>Karrasch, Daniel</creatorcontrib><creatorcontrib>Junge, Oliver</creatorcontrib><title>Heat-content and diffusive leakage from material sets in the low-diffusivity limit</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We generalize leading-order asymptotics of a form of the heat content of a submanifold (van den Berg &amp; Gilkey 2015) to the setting of time-dependent diffusion processes in the limit of vanishing diffusivity. Such diffusion processes arise naturally when advection–diffusion processes are viewed in Lagrangian coordinates. We prove that as diffusivity ɛ goes to zero, the diffusive transport out of a material set S under the time-dependent, mass-preserving advection–diffusion equation with initial condition given by the characteristic function 1 S , is ε / π d A ¯ ( ∂ S ) + o ( ε ) . The surface measure d A ¯ is that of the so-called geometry of mixing , as introduced in (Karrasch &amp; Keller 2020). We apply our result to the characterisation of coherent structures in time-dependent dynamical systems.</description><subject>advection diffusion equation</subject><subject>finite time coherent sets</subject><subject>heat content</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKt3j_kAxuZtkt3NUYpaoSCo95DNvmjq_ilJqvTb29LqzdPA4zePmSHkGvgt8LqegSiBlUrKmXVQN3BCJn-nUzLhWgGrKlDn5CKlFecAdSEm5GWBNjM3DhmHTO3Q0jZ4v0nhC2mH9tO-I_Vx7GlvM8ZgO5owJxoGmj92xPjNfvmQt7QLfciX5MzbLuHVUafk9eH-bb5gy-fHp_ndkjlRFJn5qpWVRC-htK5oy0oIpxW6WnlUSgrdSERlwVe-0ai1BIcoG19DrRsUU8IPX10cU4rozTqG3satAW72i5h9fbOvbw6L7Cw3B0sY12Y1buKwi_c__gPkSWPD</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Schilling, Nathanael</creator><creator>Karrasch, Daniel</creator><creator>Junge, Oliver</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9403-6511</orcidid><orcidid>https://orcid.org/0000-0002-3435-307X</orcidid></search><sort><creationdate>202110</creationdate><title>Heat-content and diffusive leakage from material sets in the low-diffusivity limit</title><author>Schilling, Nathanael ; Karrasch, Daniel ; Junge, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>advection diffusion equation</topic><topic>finite time coherent sets</topic><topic>heat content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schilling, Nathanael</creatorcontrib><creatorcontrib>Karrasch, Daniel</creatorcontrib><creatorcontrib>Junge, Oliver</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schilling, Nathanael</au><au>Karrasch, Daniel</au><au>Junge, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-content and diffusive leakage from material sets in the low-diffusivity limit</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2021-10</date><risdate>2021</risdate><volume>34</volume><issue>10</issue><spage>7303</spage><epage>7321</epage><pages>7303-7321</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We generalize leading-order asymptotics of a form of the heat content of a submanifold (van den Berg &amp; Gilkey 2015) to the setting of time-dependent diffusion processes in the limit of vanishing diffusivity. Such diffusion processes arise naturally when advection–diffusion processes are viewed in Lagrangian coordinates. We prove that as diffusivity ɛ goes to zero, the diffusive transport out of a material set S under the time-dependent, mass-preserving advection–diffusion equation with initial condition given by the characteristic function 1 S , is ε / π d A ¯ ( ∂ S ) + o ( ε ) . The surface measure d A ¯ is that of the so-called geometry of mixing , as introduced in (Karrasch &amp; Keller 2020). We apply our result to the characterisation of coherent structures in time-dependent dynamical systems.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac18b1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9403-6511</orcidid><orcidid>https://orcid.org/0000-0002-3435-307X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2021-10, Vol.34 (10), p.7303-7321
issn 0951-7715
1361-6544
language eng
recordid cdi_iop_journals_10_1088_1361_6544_ac18b1
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects advection diffusion equation
finite time coherent sets
heat content
title Heat-content and diffusive leakage from material sets in the low-diffusivity limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-content%20and%20diffusive%20leakage%20from%20material%20sets%20in%20the%20low-diffusivity%20limit&rft.jtitle=Nonlinearity&rft.au=Schilling,%20Nathanael&rft.date=2021-10&rft.volume=34&rft.issue=10&rft.spage=7303&rft.epage=7321&rft.pages=7303-7321&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac18b1&rft_dat=%3Ciop_cross%3Enonac18b1%3C/iop_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-f7d474ef416ac2d6733c95ec85fe55439b4ee5a1f7fb9e9941cee4bf8189be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true