Loading…
Characteristic approach to the soliton resolution
As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4 d equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations...
Saved in:
Published in: | Nonlinearity 2022-08, Vol.35 (8), p.4585-4598 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a toy model for understanding the soliton resolution phenomenon we consider a characteristic initial boundary value problem for the 4
d
equivariant Yang–Mills equation outside a ball. Our main objective is to illustrate the advantages of employing outgoing null (or asymptotically null) foliations in analyzing the relaxation processes due to the dispersal of energy by radiation. In particular, within this approach it is evident that the endstate of evolution must be non-radiative (meaning vanishing flux of energy at future null infinity). In our toy model such non-radiative configurations are given by a static solution (called the half-kink) plus an alternating chain of
N
decoupled kinks and antikinks. We show numerically that the configurations
N
= 0 (static half-kink) and
N
= 1 (superposition of the static half-kink and the antikink which recedes to infinity) appear as generic attractors and we determine a codimension-one borderline between their basins of attraction. The rates of convergence to these attractors are analyzed in detail. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/1361-6544/ac7b04 |