Loading…

Enhanced reconstruction in magnetic particle imaging by whitening and randomized SVD approximation

Magnetic particle imaging (MPI) is a medical imaging modality of recent origin, and it exploits the nonlinear magnetization phenomenon to recover a spatially dependent concentration of nanoparticles. In practice, image reconstruction in MPI is frequently carried out by standard Tikhonov regularizati...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2019-06, Vol.64 (12), p.125026-125026
Main Authors: Kluth, Tobias, Jin, Bangti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetic particle imaging (MPI) is a medical imaging modality of recent origin, and it exploits the nonlinear magnetization phenomenon to recover a spatially dependent concentration of nanoparticles. In practice, image reconstruction in MPI is frequently carried out by standard Tikhonov regularization with nonnegativity constraint, which is then minimized by a Kaczmarz type method. In this work, we revisit two issues in the numerical reconstruction in MPI in the lens of inverse theory, i.e. the choice of fidelity and acceleration, and propose two algorithmic tricks, i.e. a whitening procedure to incorporate the noise statistics and accelerating Kaczmarz iteration via randomized SVD. The two tricks are straightforward to implement and easy to incorporate in existing reconstruction algorithms. Their significant potentials are illustrated by extensive numerical experiments on a publicly available dataset.
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/ab1a4f