Loading…

Personalized kidney dosimetry in 177Lu-octreotate treatment of neuroendocrine tumours: a comparison of kidney dosimetry estimates based on a whole organ and small volume segmentations

Peptide receptor radionuclide therapy (PRRT) with 177Lu- radiolabeled octreotate is an effective treatment method for inoperable neuroendocrine tumours (NETs). There is growing evidence that estimates of the organ-at-risks (OARs) doses are necessary for the optimization of personalized PRRT (P-PRRT)...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2019-08, Vol.64 (17), p.175004-175004
Main Authors: Hou, Xinchi, Zhao, Wei, Beauregard, Jean-Mathieu, Celler, Anna
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peptide receptor radionuclide therapy (PRRT) with 177Lu- radiolabeled octreotate is an effective treatment method for inoperable neuroendocrine tumours (NETs). There is growing evidence that estimates of the organ-at-risks (OARs) doses are necessary for the optimization of personalized PRRT (P-PRRT). Dosimetry, however, requires a complicated and time-consuming procedure, which hinders its implementation in the clinic. The aim of this study is to develop a practical and automatic technique to simplify personalized dosimetry of kidney, the major OAR in 177Lu P-PRRT. The data from 30 NETs patients undergoing 44 personalized 177Lu-DOTA-TATE therapy cycles were analyzed. To determine the biokinetics of the radiopharmaceutical in the kidneys, for each patient three SPECT/CT scans were acquired, at about 4 h, 24 h and 70 h after injection. The kidneys doses were evaluated using three different approaches: (1) a traditional approach based on whole kidney (WK) segmentation; (2) a small volume (SV) manual approach (M-SV) with observer-defined SV location; and (3) a software based SV-approach that automatically defines SV location (A-SV). Four different methods of automatic SV location selections were investigated. The SV kidney doses estimated using M-SV and A-SV approaches was evaluated and the accuracy of these two approaches were compared to the WK dosimetry. The kidney bio-kinetics, in terms of effective half-lives, obtained from both of the A-SV and M-SV approaches agreed to within 10% with those obtained from the WK segmentation. The average ratios of SV doses to WK doses were mostly about 1.8  ±  0.2 for both A-SV and M-SV approaches. The linear correlation coefficients between SV doses (both A-SV and M-SV) and WK doses were up to 0.9 with p   
ISSN:0031-9155
1361-6560
DOI:10.1088/1361-6560/ab32a1