Loading…

Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons

We study with 1D PIC simulations the expansion of a dense plasma into a dilute one for density ratios 2.5 ≤ ≤ 20. Both are unmagnetized and consist of electrons and protons. Shocks form in all cases. We determine how affects the speed of the shock, that of the trailing velocity plateau and the proto...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics and controlled fusion 2020-02, Vol.62 (2), p.25022
Main Authors: Moreno, Q, Dieckmann, M E, Folini, D, Walder, R, Ribeyre, X, Tikhonchuk, V T, d'Humières, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3
cites cdi_FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3
container_end_page
container_issue 2
container_start_page 25022
container_title Plasma physics and controlled fusion
container_volume 62
creator Moreno, Q
Dieckmann, M E
Folini, D
Walder, R
Ribeyre, X
Tikhonchuk, V T
d'Humières, E
description We study with 1D PIC simulations the expansion of a dense plasma into a dilute one for density ratios 2.5 ≤ ≤ 20. Both are unmagnetized and consist of electrons and protons. Shocks form in all cases. We determine how affects the speed of the shock, that of the trailing velocity plateau and the proton beam instabilities in its upstream region. The speed of the velocity plateau relative to the upstream plasma increases significantly with . Faster shocks reflect more upstream protons and fewer protons make it downstream, which slows down the shock in the downstream frame. This slow-down reduces noticably the increase with of the shock speed in the upstream frame. All simulations demonstrate that an ion acoustic instability develops between the shock-reflected proton beam and the ambient protons. We solve the linear dispersion relation for ion acoustic waves that have wave vectors which are parallel to the beam velocity vector. Upstream conditions, for which their growth rate is largest, lead to the most unstable upstream plasmas also in the simulation. Even though linear theory predicts the growth of sine waves, which reach a small amplitude in the simulations, solitary waves become the dominant ones upstream of the shock. They enforce the formation of new shocks and ion phase space vortices. We discuss the relevance of our findings to laser-plasma experiments.
doi_str_mv 10.1088/1361-6587/ab5bfb
format article
fullrecord <record><control><sourceid>swepub_iop_j</sourceid><recordid>TN_cdi_iop_journals_10_1088_1361_6587_ab5bfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_liu_162680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3</originalsourceid><addsrcrecordid>eNp9kLtPwzAQhy0EEqWwM3pkINSOa8cdq_KUkBh4rJaf1CWNLTtp1f-eVKk6IaY73X2_k-4D4BqjO4w4n2DCcMEoryZSUeXUCRgdR6dghKopLggh9Bxc5LxCCGNeshEw78ugfzKUjYFxKbOFOUpt4Sak1muboUl-YxuodlBCY5vs2x1cdesIlW23tt-02wB1HTqTYXDQ1la3KTSHiym0fX8Jzpyss7061DH4fHz4WDwXr29PL4v5a6EJxW3hZEVVhTnhFjlFKaEzymYWaVyVDBlDOXeG4cpgOZOMWoqomhLLNKkQmmpNxqAY7uatjZ0SMfm1TDsRpBf3_msuQvoWte8EZiXjqOfRwOsUck7WHRMYib1VsVco9grFYLWP3A4RH6JYhS41_UP_4Td_4DFqJ1gpSoFKispSROPILwp5iHU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons</title><source>Institute of Physics</source><creator>Moreno, Q ; Dieckmann, M E ; Folini, D ; Walder, R ; Ribeyre, X ; Tikhonchuk, V T ; d'Humières, E</creator><creatorcontrib>Moreno, Q ; Dieckmann, M E ; Folini, D ; Walder, R ; Ribeyre, X ; Tikhonchuk, V T ; d'Humières, E</creatorcontrib><description>We study with 1D PIC simulations the expansion of a dense plasma into a dilute one for density ratios 2.5 ≤ ≤ 20. Both are unmagnetized and consist of electrons and protons. Shocks form in all cases. We determine how affects the speed of the shock, that of the trailing velocity plateau and the proton beam instabilities in its upstream region. The speed of the velocity plateau relative to the upstream plasma increases significantly with . Faster shocks reflect more upstream protons and fewer protons make it downstream, which slows down the shock in the downstream frame. This slow-down reduces noticably the increase with of the shock speed in the upstream frame. All simulations demonstrate that an ion acoustic instability develops between the shock-reflected proton beam and the ambient protons. We solve the linear dispersion relation for ion acoustic waves that have wave vectors which are parallel to the beam velocity vector. Upstream conditions, for which their growth rate is largest, lead to the most unstable upstream plasmas also in the simulation. Even though linear theory predicts the growth of sine waves, which reach a small amplitude in the simulations, solitary waves become the dominant ones upstream of the shock. They enforce the formation of new shocks and ion phase space vortices. We discuss the relevance of our findings to laser-plasma experiments.</description><identifier>ISSN: 0741-3335</identifier><identifier>ISSN: 1361-6587</identifier><identifier>EISSN: 1361-6587</identifier><identifier>DOI: 10.1088/1361-6587/ab5bfb</identifier><identifier>CODEN: PLPHBZ</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>collisionless ; collisionless plasma ; electrostatic shock ; ion acoustic instabilities ; phase space vortices ; PIC simulation ; shock</subject><ispartof>Plasma physics and controlled fusion, 2020-02, Vol.62 (2), p.25022</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3</citedby><cites>FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3</cites><orcidid>0000-0002-9823-2744 ; 0000-0002-6331-1637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162680$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno, Q</creatorcontrib><creatorcontrib>Dieckmann, M E</creatorcontrib><creatorcontrib>Folini, D</creatorcontrib><creatorcontrib>Walder, R</creatorcontrib><creatorcontrib>Ribeyre, X</creatorcontrib><creatorcontrib>Tikhonchuk, V T</creatorcontrib><creatorcontrib>d'Humières, E</creatorcontrib><title>Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons</title><title>Plasma physics and controlled fusion</title><addtitle>PPCF</addtitle><addtitle>Plasma Phys. Control. Fusion</addtitle><description>We study with 1D PIC simulations the expansion of a dense plasma into a dilute one for density ratios 2.5 ≤ ≤ 20. Both are unmagnetized and consist of electrons and protons. Shocks form in all cases. We determine how affects the speed of the shock, that of the trailing velocity plateau and the proton beam instabilities in its upstream region. The speed of the velocity plateau relative to the upstream plasma increases significantly with . Faster shocks reflect more upstream protons and fewer protons make it downstream, which slows down the shock in the downstream frame. This slow-down reduces noticably the increase with of the shock speed in the upstream frame. All simulations demonstrate that an ion acoustic instability develops between the shock-reflected proton beam and the ambient protons. We solve the linear dispersion relation for ion acoustic waves that have wave vectors which are parallel to the beam velocity vector. Upstream conditions, for which their growth rate is largest, lead to the most unstable upstream plasmas also in the simulation. Even though linear theory predicts the growth of sine waves, which reach a small amplitude in the simulations, solitary waves become the dominant ones upstream of the shock. They enforce the formation of new shocks and ion phase space vortices. We discuss the relevance of our findings to laser-plasma experiments.</description><subject>collisionless</subject><subject>collisionless plasma</subject><subject>electrostatic shock</subject><subject>ion acoustic instabilities</subject><subject>phase space vortices</subject><subject>PIC simulation</subject><subject>shock</subject><issn>0741-3335</issn><issn>1361-6587</issn><issn>1361-6587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kLtPwzAQhy0EEqWwM3pkINSOa8cdq_KUkBh4rJaf1CWNLTtp1f-eVKk6IaY73X2_k-4D4BqjO4w4n2DCcMEoryZSUeXUCRgdR6dghKopLggh9Bxc5LxCCGNeshEw78ugfzKUjYFxKbOFOUpt4Sak1muboUl-YxuodlBCY5vs2x1cdesIlW23tt-02wB1HTqTYXDQ1la3KTSHiym0fX8Jzpyss7061DH4fHz4WDwXr29PL4v5a6EJxW3hZEVVhTnhFjlFKaEzymYWaVyVDBlDOXeG4cpgOZOMWoqomhLLNKkQmmpNxqAY7uatjZ0SMfm1TDsRpBf3_msuQvoWte8EZiXjqOfRwOsUck7WHRMYib1VsVco9grFYLWP3A4RH6JYhS41_UP_4Td_4DFqJ1gpSoFKispSROPILwp5iHU</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Moreno, Q</creator><creator>Dieckmann, M E</creator><creator>Folini, D</creator><creator>Walder, R</creator><creator>Ribeyre, X</creator><creator>Tikhonchuk, V T</creator><creator>d'Humières, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0002-9823-2744</orcidid><orcidid>https://orcid.org/0000-0002-6331-1637</orcidid></search><sort><creationdate>20200201</creationdate><title>Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons</title><author>Moreno, Q ; Dieckmann, M E ; Folini, D ; Walder, R ; Ribeyre, X ; Tikhonchuk, V T ; d'Humières, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>collisionless</topic><topic>collisionless plasma</topic><topic>electrostatic shock</topic><topic>ion acoustic instabilities</topic><topic>phase space vortices</topic><topic>PIC simulation</topic><topic>shock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno, Q</creatorcontrib><creatorcontrib>Dieckmann, M E</creatorcontrib><creatorcontrib>Folini, D</creatorcontrib><creatorcontrib>Walder, R</creatorcontrib><creatorcontrib>Ribeyre, X</creatorcontrib><creatorcontrib>Tikhonchuk, V T</creatorcontrib><creatorcontrib>d'Humières, E</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Plasma physics and controlled fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno, Q</au><au>Dieckmann, M E</au><au>Folini, D</au><au>Walder, R</au><au>Ribeyre, X</au><au>Tikhonchuk, V T</au><au>d'Humières, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons</atitle><jtitle>Plasma physics and controlled fusion</jtitle><stitle>PPCF</stitle><addtitle>Plasma Phys. Control. Fusion</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>62</volume><issue>2</issue><spage>25022</spage><pages>25022-</pages><issn>0741-3335</issn><issn>1361-6587</issn><eissn>1361-6587</eissn><coden>PLPHBZ</coden><abstract>We study with 1D PIC simulations the expansion of a dense plasma into a dilute one for density ratios 2.5 ≤ ≤ 20. Both are unmagnetized and consist of electrons and protons. Shocks form in all cases. We determine how affects the speed of the shock, that of the trailing velocity plateau and the proton beam instabilities in its upstream region. The speed of the velocity plateau relative to the upstream plasma increases significantly with . Faster shocks reflect more upstream protons and fewer protons make it downstream, which slows down the shock in the downstream frame. This slow-down reduces noticably the increase with of the shock speed in the upstream frame. All simulations demonstrate that an ion acoustic instability develops between the shock-reflected proton beam and the ambient protons. We solve the linear dispersion relation for ion acoustic waves that have wave vectors which are parallel to the beam velocity vector. Upstream conditions, for which their growth rate is largest, lead to the most unstable upstream plasmas also in the simulation. Even though linear theory predicts the growth of sine waves, which reach a small amplitude in the simulations, solitary waves become the dominant ones upstream of the shock. They enforce the formation of new shocks and ion phase space vortices. We discuss the relevance of our findings to laser-plasma experiments.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6587/ab5bfb</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9823-2744</orcidid><orcidid>https://orcid.org/0000-0002-6331-1637</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3335
ispartof Plasma physics and controlled fusion, 2020-02, Vol.62 (2), p.25022
issn 0741-3335
1361-6587
1361-6587
language eng
recordid cdi_iop_journals_10_1088_1361_6587_ab5bfb
source Institute of Physics
subjects collisionless
collisionless plasma
electrostatic shock
ion acoustic instabilities
phase space vortices
PIC simulation
shock
title Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shocks%20and%20phase%20space%20vortices%20driven%20by%20a%20density%20jump%20between%20two%20clouds%20of%20electrons%20and%20protons&rft.jtitle=Plasma%20physics%20and%20controlled%20fusion&rft.au=Moreno,%20Q&rft.date=2020-02-01&rft.volume=62&rft.issue=2&rft.spage=25022&rft.pages=25022-&rft.issn=0741-3335&rft.eissn=1361-6587&rft.coden=PLPHBZ&rft_id=info:doi/10.1088/1361-6587/ab5bfb&rft_dat=%3Cswepub_iop_j%3Eoai_DiVA_org_liu_162680%3C/swepub_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-fa75b71838e0fb55359569e0c17260dd588fd617d1a9a65e505b43e6c37004cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true