Loading…

Local gyrokinetic simulations of tokamaks with non-uniform magnetic shear

In this work, we modify the standard flux tube simulation domain to include arbitrary ion gyroradius-scale variation in the radial profile of the safety factor. To determine how to appropriately include such a modification, we add a strong ion gyroradius-scale source (inspired by electron cyclotron...

Full description

Saved in:
Bibliographic Details
Published in:Plasma physics and controlled fusion 2023-01, Vol.65 (1), p.14004
Main Authors: Ball, Justin, Brunner, Stephan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we modify the standard flux tube simulation domain to include arbitrary ion gyroradius-scale variation in the radial profile of the safety factor. To determine how to appropriately include such a modification, we add a strong ion gyroradius-scale source (inspired by electron cyclotron current drive) to the Fokker–Planck equation, then perform a multi-scale analysis that distinguishes the fast electrons driven by the source from the slow bulk thermal electrons. This allows us to systematically derive the needed changes to the gyrokinetic model. We find new terms that adjust the ion and electron parallel streaming to be along the modified field lines. These terms have been successfully implemented in a gyrokinetic code (while retaining the typical Fourier representation), which enables flux tube studies of non-monotonic safety factor profiles and the associated profile shearing. As an illustrative example, we investigate tokamaks with positive versus negative triangularity plasma shaping and find that the importance of profile shearing is not significantly affected by the change in shape.
ISSN:0741-3335
1361-6587
DOI:10.1088/1361-6587/aca715